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Lab 5, Information Retrieval and Text Mining

Due date: Friday, November 19, 10:00pm

Lab Assignment

This is a pair programming lab. Partners are assigned during the November 9 class.
As part of this assignment you are asked to analyze a collection of text documents, the Reuter 50-50 dataset

that is often used in text mining and text classification tasks. You will create vector space representations of the
documents from this dataset, and will use these representations to conduct a text mining study.

Determine if classification algorithms you implemented in Lab 3-2, namely, the K-Nearest Neighbors
algorithm and Random Forests, can be used to reliably establish the authorship of the text documents
in the dataset.

Notice that you get to reuse quite a bit of the Lab 3 code in this assignment.

The Data Collection: Reuter 50-50 Datasets

Reuter 50-50 collection of text documents1 is a well-known and well-studied dataset often used in machine learning
and information retrieval coursework, as well as research.

The dataset consists of a collection of news stories published by the Reuters news agencies. The dataset is
broken into two parts called training set and test set. For our lab, the intents of these two parts of the dataset are
not important and we will use both parts of the dataset together.

The dataset was constructed to study machine learning algorithms for authorship attribution. It consists of a
selection of 50 authors who published news stories with Reuters. For each author, exactly 100 news stories they
authored is placed in the dataset. 50 of the stories are placed in the training set part of the dataset and the
remaining 50 – in the test set.

The dataset is available both from Lab 5 course web page, as well as from the University of California at Irvine
(UCI) Machine Learning Datasets repository as a single zip file named C50.zip. When the file is unzipped, it
creates the following directory structure:

dekhtyar@csclnx11:~/.../C50 $ ls -al

total 8056

drwx------. 4 dekhtyar domain^users 4096 Apr 7 23:50 .

drwx------. 5 dekhtyar domain^users 4096 Apr 7 23:48 ..

drwx------. 52 dekhtyar domain^users 4096 Apr 7 23:50 C50test

drwx------. 52 dekhtyar domain^users 4096 Apr 7 23:50 C50train

-rw-------. 1 dekhtyar domain^users 8194031 Apr 7 22:15 C50.zip

dekhtyar@csclnx11:~/.../C50 $ ls C50test/

AaronPressman JaneMacartney LydiaZajc RobinSidel

AlanCrosby JanLopatka LynneO’Donnell RogerFillion

AlexanderSmith JimGilchrist LynnleyBrowning SamuelPerry

BenjaminKangLim JoeOrtiz MarcelMichelson SarahDavison

BernardHickey JohnMastrini MarkBendeich ScottHillis

BradDorfman JonathanBirt MartinWolk SimonCowell

DarrenSchuettler JoWinterbottom MatthewBunce TanEeLyn

DavidLawder KarlPenhaul MichaelConnor TheresePoletti

EdnaFernandes KeithWeir MureDickie TimFarrand

EricAuchard KevinDrawbaugh NickLouth ToddNissen

1https://archive.ics.uci.edu/ml/datasets/Reuter 50 50
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FumikoFujisaki KevinMorrison PatriciaCommins WilliamKazer

GrahamEarnshaw KirstinRidley PeterHumphrey

HeatherScoffield KouroshKarimkhany PierreTran

The C50train directory has exactily the same structure.
Each directory inside C50train and C50test directories bears the name of one of the 50 authors. Inside each

directory is 50 .txt files containing the stories written by that author. Each story is in a separate file whose name
follows the following pattern:

<number>newsML.txt

where <number> is a 5- or 6-digit number representing the unique ID of the story2.

The Task

Preliminary Steps

The first task for you assignment is to create vectorized tf-idf representations of each document and to store these
representations.

Write a program textVectorizer.java or textVectorizer.py3 that takes as input the location of the root
of the Reurters 50-50 dataset directory, and produces, as the result, a file containing the vectorized tf-idf repre-
sentations for each of the 5000 documents in the dataset. The name of the output file can be an input parameter
to your program (for the sake of flexibility). Additionally, your program shall produce (to make your life easier
during the evaluation stages) a ground truth file that for each document (identified by its file name) stores the
name of the author (name of the directory the file is in). The ground truth file can have any format you want,
but a simple CSV file looking as follows will suffice:

421829newsML.txt,AaronPressman

424074newsML.txt,AaronPressman

...

236352newsML.txt,AlanCrosby

293241newsML.txt,AlanCrosby

...

Note: You must write the entire vectorizer from scratch without the use of text vectorization
tools/APIs/functionality available in the specialized packages in the programming language of your
choice. You are explicitly prohibited from using any scikit learn or nltk Python package functionality for
this lab with the exception of nltk’s stemmers (as well as their counterparts in other languages). The point
of this assignment is to learn how to build this functionality.

You can use standard parsing techniques available to you in your programming languages such as split()

and strip() methods. You can take advantage of the data structures provided to you by the NumPy package (or
similar packages in other programming languages).

When implementing vectorized representations of the documents, please observe that the overall vocabulary
of the Reuter 50-50 dataset is significantly larger than the number of unique words used in any specific single
document, and therefore, the tf-idf vectors of individual documents will be rather sparse.

To support your vectorization efforts, and other tasks of this assignment, you will implement a Vector class (or a
Vector ADT) in your host programming language. Your Vector class will store sparse tf-idf vector representations
of text documents. It shall also implement at least two similarity score computations for a pair of vectors: cosine
similarity and okapi.

2The Reuter 50-50 dataset was built out of a much larger data set of Reuters stories, so there is no rhyme or reason to the numbers

contained in the filenames. All you need to know is that they are all unique.
3As usual, if you are using a different programming language, name your program accordingly.
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Authorship Attribution Through Classification

You will use the K-Nearest Neighbors classifier and the Random Forest classifier to determine if they can help you
establish the authorship of the articles.

K-Nearest Neighbors requires a distance or similarity metric to properly operate. You will use the cosine

similarity and okapi metrics in this exercise.
Write two programs: knnAuthorship.java/knnAuthorship.py and RFAuthorship.java/RFAuthorship.py

which take as input

• the file of vectorized document representations,

• a flag indicating the similarity metric to be used in the computation,

• the appropriate to each method parameters:

– for KNN: a value of k (number of nearest neighbors to check)

– for Random Forests: values for (a) number of decision trees to build, (b) number of attributes in a
decision tree, and (c) number of data points to be used to construct a decision tree, as well as (d) any
parameters you need for the C45 algorithm itself (e.g., the threshold).

• if needed, any other input parameters (document in your README fiel)

The output of each program shall be an authorship label predicted for each of the documents in the Reuters

50-50 dataset.
Your KNN implementation shall use an all-but-one validation (take a document, find k nearest neighbors

among the remaining 4999 documents in the dataset). The output can be printed out directly to the screen, or
placed in an output file.

Your Random Forest implementation does not need a cross-validation in this case (using subsets of the entire
dataset to build individual trees in the forest is sufficient to prevent overfit), so, it should simply build the forest
and make the predictions.

However, for each of the methods you can consider running the classifier in one of two ways:

• Approach 1: 50-class classification problem. In this case, you run a single classification task that has
a class variable consisting of 50 labels (individual authors).

• Approach 2: one-vs-the-world classification problem. A one-vs-the-world approach is to create a
binary classification problem for each of the fifty authors in the dataset. You will wind up with fifty binary
classification problems where you will build a model to recognize a specific author vs simply recognizing that
a document is NOT written by that author.

You are not required to implement both approaches, but you could - in a search for the most accurate
classification results.

One-vs-the-world approach may prove to be more robust, but it comes with a cost of creating 50 classifiers
where the 50-class classification approach needs to build only one model.

To evaluate the accuracy of the predictions, write an classifierEvaluation.java or classfierEvaluation.py
program that takes as input the file generated by the knnAuthorship or the RFAuthorship program, as well as the
ground truth file (remember you had to generate one!)4, and produces as the result the following output:

• For each author in the dataset, output the total number of hits (correctly predicted documents), strikes
(false positives predicted) and misses (document written by the author, which were not attributed to the
author).

• For each author in the dataset report the precision, the recall, and the f1-measure of the KNN procedure.

• Overall, report the total number of documents with correctly predicted authors, the total number of docu-
ments with incorrectly predicted authors, and the overall accuracy of the prediction.

4It may be helpful if both files are stored in exactly the same format.
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• The full 50x50 confusion matrix in a CSV form (with the top row, and first column containing the author
names/labels). This can be dumped directly into an output file, rather than printed to screen.

Please note, if you are implementing a one-vs-the-world classification, then instead of the ClassifierEvaluation
program described above, your analysis should be performed as follows (name the program performing it OneVWorldEval:

• Program first runs binary classification (using either your KNN or Random Forest implementation) for each
of the fifty class labels.

• The prediction for each binary classification model is stored separately (create a working directory and dump
50 output files in it).

• For each class label, the program evaluates the precision and recall of this class based on the binary classif-
ciation output for the model built to recognize this class, and report the number of hits, strikes, and misses
for that specific class label (author).

• The full 50x50 confusion matrix here is not needed.

You can reuse and repurpose your code from Lab 3 for this task. Your evaluator may be a bit more complex,
but it can be built conveniently as a branch of your Lab 3 evaluator code.

Your analytical goal is to determine which authors are easier to predict authorship for, and which authors are
hard (and who they tend to get confused with). You can do the final analytical step by hand - simply looking
at the results of your evaluation program, or, alternatively, you can add code to your evaluation program that
reports this information out automatically.

Tuning Parameters for Information Retrieval/Vectorization Part of the Assignment

When experimenting with both analytical methods you may wind up running your analyses multiple time with a
different set of parameters. For both methods, you can construct different datasets based on what pre-processing
techniques were used to create them. Generally speaking, for the preprocessing, you have four key choices to
consider:

• No stopword removal, no stemming.

• Stop word removal, but no stemming.

• Stemming, but no stopword removal.

• both Stemming and stopword removal.

Within this set of possibilities, different lists of stop words can be used to create more possible inputs to both
the classification and clusering authorship attribution methods.

Finally, your similarity score (cosine or okapi) is another parameter that can be used to build different author-
ship attribution models.

Tuning Parameters for Classification Part of The Assignment

For the KNN-based authorship attribution, you have an additional hyperparameter to tune: K, the number of
neighbors to use. You have some natural boundaries on K as part of your procedure: clearly, K ≤ 99, and quite
possibly needs to be made significantly smaller.

For the Random Forest-based authorship attribution, you have your three RF parameters (number of trees,
number of attributes in a tree, number of data points used to build a tree), plus any C45 parameters you are
willing to expose (generally speaking you can set a standard threshold, and commit to using either information
gain or information gain ratio, so there is no need for extra parameters here beyond the three above).

Your random forest should be fairly large (remember, there are many words in the document collection, the
Random forest should give each a chance to participate in helping recognize authorship), the number of attributes
in a tree probably also needs to be larger than what we are used to be (10-20 might be a good target, otherwise
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the number of decision trees will really need to explode), while the number of data points can be selected with
an idea that you want to have representative writings from all authors in the data. (you could simply use 50% as
your target, but can probably get away with a smaller percentage to speed things up).

Please note: training your models for this assignment may take a long time. Please make sure to give
yourself at least 4-5 days to run all the code/collect all the information.

Reporting your findings

Prepare a report that describes the following:

• The exepriment you ran for each of the two analytical methods for determining authorship: what datasets
were explored, which values of hyperparameters were investigated.

• The results of your best runs for each of the two analytical methods. You should present in tabular (or easy
to read text) form the accuracy measures for determining each author, as well as the overall accuracy. Any
raw results shall be included in the appendix to your report.

• A reflection on each of the methods w.r.t. the method’s overall ability to properly attribute authorship of
the articles, as well as any specific information that stands out: which authors are easy to predict? which
are hard? which tend to be confused with each other?

• A comparison of two methods to each other and a final determination of which method proved to be more
accurate.

Submission

For this lab we will use CSL handin tool.
You shall submit the following.

• All the code you wrote to fulfill the requirements of this lab in a single zip or tarred gz file. Resubmit any
code from Labs 3 or 4 that you reused.

• A README file with instructions on how to run your code to perform different tasks of the assignment.

• Output files for best respective runs generated by your evaluation programs for both analytical methods
for authorship detection (specify filenames in README file). (Note, some of this information may also be
included in your report appendix, but having an appendix does not absolve you from submitting the raw
output files).

• Your report in PDF format.

Place all code files and directories except for the report file, the README file and the output files, into
a single archive named lab05.tar.gz or lab05.zip and submit it. Submit the PDF version of the report, the
README file and the output files separately, outside of the archive.

Use handin to submit as follows:
Section 01:

$ handin dekhtyar lab05-466-01 <FILES>

Section 03:

$ handin dekhtyar lab05-466-03 <FILES>

Good Luck!
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