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Fall 2021 CSC 466: Knowledge Discovery from Data Alex Dekhtyar
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Lab 4: Clustering

Due date: Friday, November 5, 10:pm.
Note: Lab 5 assignment will come out on November 4 in class.

Overview

In this assignment you will use unsupervised learning techniques to discover clusters in a number of sim-
ple datasets. You will implement three cluster analysis methods, k-means clustering, agglomerative
hierarchical clustering and DBSCAN.

Assignment Preparation

This is a pair programming assignment. Each student teams up with a partner. For this lab, unless you
have already changed a partner once in this course, pick a partner different than your Lab 3
partner. If you have changed partners before, you can, but do not have to change partners. I
strongly recommend that all students take active part in implementing each of the algorithms.
Note: Open-source versions of clustering algorithms are plentiful. It is considered cheating to re-use
code for clustering algorithms that was written by someone else. (You may use code from other explicitly
acknowledged sources for other purposes in the program, e.g., for parsing input).

Data

We provide multiple simple datasets for use in this assignment. Each dataset consists of two files: a CSV
(comma-separated values) file containing the actual data and a text .txt file containing the header of the
dataset, specifying the names of the attributes.

Most of the datasets were adopted from

http://people.sc.fsu.edu/∼burkardt/datasets/hartigan/hartigan.html

which contains a list of datasets from [1] and [2]. Some of these datasets contain real data, some — are
synthesized. One more dataset, Iris, is a classical machine learning dataset. from the University of California,
Irvince Machine Learning repository1 The remaining data files come from the FATAL ACCIDENTS dataset,
collected by Peter Oyler2. The dataset contains information about automobile accidents in California that
resulted in fatalities. All CSV files for all datasets have exactly the same format.

CSV file format. The first line of each CSV file is analogous to the restrictions file in the Lab 3 assignment.
It is a binary vector identifying which columns of the CSV file shall be used for clustering. In some CSV
files, one of the columns is used as a rowId, and should be excluded from the analysis, while in some other
files, all columns contain data. In the Iris dataset, the last column (labeled as 0 by the restrictions vector)
is actually a class label, which can be used as ground truth to validate the quality of the clustering.
0 in position i of the first row means that column i should be ignored in the cluster analysis.
1 in position 1 of the first row means that column i should be used in the cluster analysis.

The remaining rows of the CSV file contain data points.

1http://archive.ics.uci.edu/ml/index.html
2Peter took the first version of CSC 466. The FATAL ACCIDENTS dataset was his data analytical project.

1



Text files. Text files need not be processed by your programs. Text files contain the original headers for
each dataset, split from the CSV data to simplify parsing. The headers describe the nature of the dataset,
contain references to its origins and specify the names of each column in the dataset. If you want to use
attribute headers in your program (e.g., for generating output), you may either add a header file name as a
parameter to your program, or deduce the header file name (it will always be header followed by the name
of the data file w/o extension, followed by .txt).

List of Datasets

The following datasets are officially provided to you for this assignment. Each file listed below, as well as a
zip archive of the entire collection is available at the following URL:

http://www.csc.calpoly.edu/ dekhtyar/466-Fall2021/lab04.html

CSV File Header File Dataset Source
4clusters.csv header 4clusters.txt 4 clusters in 2D space (synthetic) Spaeth[2]
mammal milk.csv header mammal milk.txt constituents of mammal milk Hartigan[1]
iris.csv header iris.txt measurements of different Iris flowers UCI ML repository
many clusters.csv many clusters headers.txt many clusters in 2D space (synthetic) Spaeth[2]
AccidentsSet01.csv header AccidentsSet01.csv fatal automotive accidents P. Oyler
AccidentsSet03.csv header AccidentsSet03.csv fatal automotive accidents P. Oyler

More datasets can be manufactured and used by each team, but only the datasets listed above will be
used as part of your lab deliverables.

Lab Assignment

You will investigate the behavior of three common clustering procedures, k-means clustering agglom-
erative hierarchical clustering and DBSCAN on the datasets provided to you. Part of your assignment
involves implementation of the three clustering procedures. In addition to this, you will study the datasets
using your implementations of the clustering algorithms, and will submit the results you have obtained.

For simplicity, the lab refers to Java or Python programs whenever specific pieces of code are mentioned.
However, each team is free to implement clustering algorithms in their programming language
of choice (provided that the instructions on how to run their programs are submitted as part of the lab
deliverables).

k-means Clustering

You will implement the k-means clustering algorithm as kmeans.java or kmeans.py programs3.

Input. The program shall take as input two parameters:

java kmeans <Filename> <k>

or

python kmeans.py <Filename> <k>

<Filename> is the name of the CSV file containing the input dataset.
<k> is the number of clusters the program has to produce.

Note: Your program may take additional parameters based on the needs of your implementation (see
below). All additional parameters must be supplied after the first two and must be properly documented in
your README file.

3Feel free to have as many support .java or .py files as you need.
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Internals. There is a variety of versions of the k-means clustering algorithm. Each team is encouraged
to (a) select the specific version and, possibly (b) experiment with different versions 4 to discover the one
that produces better clusters (or works faster).

Among the different decisions that each team can make are:

• Choice of initial cluster centroids. Random, SelectCentroids procedure, pre-selected, other varia-
tions. . . .

• Choice of centroid recomputation method. Typically, the mean point of the cluster (hence the
”k-means” in the name of the method), but you can use medians or modes if so desired.

• Stopping criterion. Minimum point reassignment, minimum centroid change, threshold on sum of
squared error (SSE) (for the latter — you need to find a good threshold).

• Distance measure. While Eucledean distance makes sense for some of the datasets (the 2D syn-
thetic ones, e.g.), you may choose to try other distance measures to see if your cluster organization
changes/becomes more pronounced.

• Data normalization/standardization. While this is not part of the k-means clustering algorithm
per se, you may choose to include an optional data normalization or data standardization procedure
to deal with input data where different attributes have values from drastically different scales.

• Dealing with outliers. Attempt to detect outliers vs. no outlier detection.

Output. The output of your program shall consist of two things:

1. Description of the detected clusters.

2. Evaluation of the computed clustering of the data.

Since our datasets are small, describe detected clusters by listing all points belonging to them (this
also simplifies grading/comparison). If data points come with rowIds, you are allowed to output just them.
You can also threshold direct output of all data points in a cluster, and, if your code runs on larger datasets,
output a selection of data points in each cluster, or use some output approach.

Because except for the Iris dataset we lack well-established (and suppliable to your program) ground
truth on clusters, only internal evaluation measures for clusters need to be computed and reported.
(For the Iris dataset, you can compute the accuracy/cluster purity measures for each cluster if there is a
clear cluster-to-class mapping.)

For each cluster, compute and report:

1. Number of points in the cluster.

2. Coordinates of its centroid.

3. Maximum, minimum, and the average distance from a point to cluster centroid.

4. Sum of Squared Errors (SSE) for the points in the cluster.

You may additionally choose to report any other internal measures, e.g., inter-cluster distances.
Here is an example of an output for a single cluster (w/o the SSE):

4This is where two people can work in parallel on the same program.
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Cluster 0:

Center: 26.25,28.0,

Max Dist. to Center: 10.077822185373186

Min Dist. to Center: 3.010398644698074

Avg Dist. to Center: 6.569312544990502

4 Points:

25.0,38.0,

32.0,27.0,

26.0,25.0,

22.0,22.0,

(Your output does not have to match this, but should report the information in an easy-to-read way).

Hierarchical Clustering

You will implement the agglomerative hierarchical clustering method as an hclustering.java or an
hlcustering.py program.

Input. Your program shall take two parameters as input:

java hclustering <Filename> [<threshold>]

or

python hclustering <Filename> [<threshold>]

<Filename> is the name of the CSV file containing the input dataset.
<threshold> is the optional threshold at which your program will ”cut” the cluster hierarchy to report the
clusters.

If <threshold> parameter is specified in the input, your program shall produce both the cluster hier-
archy, and the appropriate list of clusters cut at the specified threshold.

If <threshold> parameter is not specified in the input, your program shall produce the cluster hierarchy
alone.

Note. Your program may include other optional parameters (e.g., selection of the linkage method) after
the first two parameters are entered. If you are including additional parameters, please document them
properly in the README file.

Internals. Commonly, hierarchical clustering algorithms take as input the distance matrix for the
points in the input dataset. You algorithm will work with the same data as the k-means clustering
algorithm, i.e., the actual dataset. Your implementation of the hierarchical clustering method will be
responsible for computing the distances between all points in the dataset.

I strongly recommend that you separate the computation of the distance matrix from the actual clustering
procedure and make your implementation of the hierarchical clustering take a distance matrix computed
from the input data as input.

Additionally, as with k-means clustering, in your implementation of the agglomerative hierarchical
clustering algorithm, you can select the specific details of implementation that you prefer, or experiment
with multiple options.

Among the features you have to select are:

• Distance measure for points. See k-means clustering algorithm discussion.

• Distance measure for clusters. Select between single-link, complete-link and average-link
methods (you can also try centroid or Ward’s methods).
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Output. Your implementation shall produce as output the following information:

• The dendrogram of the cluster hierarchy constructed by the algorithm. This hierarchy is inde-
pendent of the threshold and shall be produced each time the program is run. It is useful to output
the dendrogram into a separate file.

• The actual clusters obtained by applying the input threshold to the computed cluster hierarchy.

• The evaluation measures specifying the quality of the obtained clusters.

The latter two types of output should be produced only if the threshold value is specified in the input.
If it is not specified, only the tree is produced and returned.

Dendrogram. Create an XML or a JSON version of the cluster hierarchy dendrogram and output it. You
need to output the dendrogram XML to stdout, but you may, if you want, also create an XML or JSON
file to store it (in fact, it is recommended that you do so).

XML. The XML representing the dendrogram is simple and straightforward. The dendrogram is a binary
labeled tree. You will use three XML elements:

• <tree> to indicate the root node of the dendrogram.

• <node> for all inner nodes.

• <leaf> for all leaf nodes containing individual data points. Leaf elements are EMPTY.

The <tree> and <node> elements will contain an attribute height representing the height label of the
node (the distance between the two clusters that are merged).

The <leaf> elements will contain an attribute data whose contents shall be the data point from the
dataset represented by the leaf node (or its rowId). For the sake of completeness, feel free to add a height

attribute with the value of 0 to the <leaf> elements.
The <tree> and all <node> elements shall have exactly two children: either <node> or <leaf> elements.
Here is an example of a small XML output and the dendrogram it represents.

<tree height = "5.0" >

<node height = "2.0">

<leaf height= "0" data ="1, 0"/>

<leaf height= "0" data ="3, 0"/>

</node>

<leaf height = "0" data = "6,0"/>

</tree>

(1,0) (3,0)

2.0

(6,0)

5.0

JSON. The JSON version of the dendrogram represents the same information as the XML version. Use
for following JSON format.

• The root node, and any internal node JSON object shall contian three attributes:

type "root" for root node, "node" for internal nodes
height the height of the node in the tree
nodes a JSON array consisting of two JSON objects representing the subtrees

• A JSON object for a leaf node shall contain the following three attributes:

type "leaf"

height the height of the node in the tree (typically value is 0.0)
data data point represented by the leaf
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Here is the same tree in JSON format.

{type: "root"

height: 5.0,

nodes: [{type: "node",

height: 2.0,

nodes: [{ type:"leaf"

height:0,

data: "1,0"},

{ type: "leaf":

height: 0,

data :"3,0"

}]

},

{type: "leaf",

height: 0,

data: "6,0"

}

]

}

Note: You may use a JSON array for storing the value of the data attribute in the leaf node:

{type: "leaf",

height: 0,

data: [6,0] }

Clusters and measures. Whenever a threshold is specified, your program shall, in addition to producing
the full dendrogram, also report the clusters that are formed when the dendrogram is cut at the specified
threshold. The clusters and their parameters shall be reported in the same way as your k-means clustering
algorithm implementation does it.

DBSCAN

You will implement the agglomerative hierarchical clustering method as a dbscan.java or dbscan.py
program.

Input. Your program shall take three parameters as input:

java dbscan <Filename> <epsilon> <NumPoints>

or

python dbscan <Filename> <epsilon> <NumPoints>

<Filename> is the name of the CSV file containing the input dataset.
<epsilon> is the Epsilon (ε) parameter of the DBSCAN algorithm: the radius within which DBSCAN shall
search for points.
<NumPoint> is the minimal number of points within the <epsilon> distance from a given point to continue
building the cluster.
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Internals. Efficient implementation of DBSCAN requires knowledge of spatial data structures (such as R-
trees, or k-d trees) to store data points and allow the algorithm to prune computations of distances between
the points. Given the sizes of the input datasets, it is ok for you to implement DBSCAN näıvely as follows:

• compute the matrix of pairwise distances between the points

• for each point, construct a list of points within the <epsilon>-vicinity

• using the data structure you constructed on the previous step, perform DBSCAN search until you run
out of points.

With proper data structures used, this algorithm will be rather efficient for small datasets.

Output. The output of your dbscan.java or dbscan.py program shall look similar to the output of your
kmeans program, with one additional caveat.

DBSCAN allows for easy outlier detection (outliers are all data points that do not get placed into clusters).
Because of this, in addition to reporting the information about each cluster, as you would in the output of
your kmeans program, your DBSCAN output shall also include information about the outliers detected. On
small inputs, you can list all outliers, and provide some basic statistics (total number of outliers, percentage
of the dataset outliers constitute). For large inputs, you may trim the output of the outliers, but shall still
provide the basic statistics.

Study of the datasets

You will use your implementations of the k-means clustering, agglomerative hierarchical clustering
and DBSCAN methods to study the datasets provided to you and to find the best (in your opinion) clusters
in the data.

The results of your study will be compiled in the report that each team will prepare and submit.

Use all methods. For each dataset provided to you, you need to use all three methods (programs) to
discover the best clusters. Your report will indicate the best results you achieved using each of the three
programs.

Best clustering. Each implementation comes with some predefined parameters (k, number of clusters, for
k-means clustering; threshold for hierarchical clustering, ε and NumPoints for DBSCAN), which will affect
the output of the respective program. In addition, each team may choose to implement multiple choices for
various parts of each algorithm (e.g., you may implement all three linking techniques for the hierarchical
clustering, or a number of different ways to select the initial centroids for the k-means clustering).

You will run your programs on each dataset with different settings of the input parameters (and any
choices that you have implemented) to determine which runs produce the best clustering result. A systematic
approach to doing so is called tuning hyperparameters. In case of clustering, such tuning may have to be
performed manually – as it will fall on you to determine which cluster evaluation metrics computed by your
programs constitute a better clustering of your data (in case of hypertuning parameters for classification
you often can do it automatically).

Additionally, you may choose to determine the ground truth for some (or all) of the datasets and
compare the outputs to the results you obtain. Ground truth for the Iris dataset is given in the dataset
itself. For some other datasets it can be determined by investigating/visualizing the dataset using any
tools available to you. 2D and some 3D datasets, for example, can be plotted as scatterplots using Excel
or matplotlib, and visual observation may help you determine the clusters that should be detected by your
program. (For some datasets, like the economy dataset, which has 10 variables, simple visualization may be
infeasible).
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Report. Each team will prepare a report of discoveries. The report will consist of the following information:

1. Study Design. Provide brief description of your implementations of the two clustering methods. Specify
which features (such as distance measures, centroid chocies, etc.) you have implemented and used in
the study.

2. Results. For each dataset, and for each algorithm provide the description of the best result achieved.
Specify the input parameters (and features) of the program that lead to the best result, and provide
a snapshot of the obtained output. Do not paste the output verbatim (you will be putting it in
the appendix).

3. Visualization. Where possible (some of your datasets have only 2-3 dimensions), provide a visualization
of the clustered data.

4. Discussion. May be embedded into reporting of results. Mention any interesting observations about
specific datasets/methods that you have made during the study.

5. Analysis. Present an overall conclusion of your results. Which method(s) performed better? Did some
method worked better on some specific type of data and another – on different data? When did each
of the algorithms perform well? What features (if any) of each algorithm lead to better performance
in what cases?

6. Appendix. Clustering output. Provide the full descriptions of the clusters you obtained on all runs
you report covers. Make sure your appendix is carefully organized. Your Results, Visualization and
Discussion sections can reference any content in the Appendix, so make sure results of each run are
properly annotated with the dataset used, method/algorithm used, and any applicable parameter
settings.

Deliverables and submission instructions

This lab has both electronic and harcopy deliverables.

Electronic deliverables.

• kmeans.java/kmeans.py and all supporting files.

• hclustering.java/hclustering.py and all supporting files.

• dbscan.java/dbscan.py and all supporting files.

• README file specifying what has been implemented, and providing any instructions for compiling and
running the code. (must contain the names of all students on the team).

• The report. The electronic version of the report should be submitted in PDF format.

Please place all your deliverables EXCEPT the PDF version of the report and the README file into a
sinlge zip file lab04.zip. Please submit your PDF report the README file separately.

Use the following command

$ handin dekhtyar lab04 <Files>
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