
. .

Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:
Classification/Supervised Learning

Definitions

Data. Consider a set A = {A1, . . . , An} of attributes, and an additional cate-

gorical attribute C , which we call a class attribute or category attribute.

dom(C) = {c1, . . . , ck}. We call each value ci a class label or a category label.

The learning dataset is a relational table D.

Two formats:

1. Training (data)set. D has schema (A1, . . . , An, C), i.e.,

for each element of the dataset we are given its class label.

2. Test (data)set. D has schema (A1, . . . , An), i.e.,

the class labels of the records in D are not known.

Classification Problem. Given a (training) dataset D, construct a classifica-

tion/prediction function that correctly predicts the class label for every record

in D.

Classification function = prediction function = classification model = classifier.

Supervised learning because training set contains class labels. Thus we can com-

pare (supervise) predictions of our classifier.

Classification Methodology

Naı̈ve Bayes. Estimation of probability that a record belongs to each class.

Neural Netowoks. Graphical models that construct a ”separation function” based

on the training set data.

1

Support Vector Machines (SVMs). Linear models for two-class classifiers.

Association Rules. Infer association rules with class label on the right side.

Decision Trees. Build a tree-like classifier. (key advantage: human-readable!)

Decision Trees

Decision tree-based classifiers are simple and efficient.

Decision trees. Let A = {A1, . . . , Ak} are the dataset attributes and C is a class

label. Let dom(C) = {c1, . . . , ck}. A decision tree over A and C is a tree T =
〈V,E〉 such that,

1. Each non-leaf node v ∈ V is labeled with some Ai ∈ A.

2. Each leaf node vl ∈ V is labeled with some class label ci ∈ dom(C).

3. Each edge E = (v, v′), where label(v) = Ai is labeled with some value

a ∈ dom(Ai).

4. No attribute Ai ∈ A can appear more than once on each path from root to

leaf.

A decision tree can be used as a classifier as follows:

• Consider a record t = (a1, a2, . . . , an).

• Start at the root node r of the decision tree T . Let label(r) = Ai. Find the

edge e = (r, v), such that label(e) = t(Ai) = ai, i.e., follow the outgoing

edge from r that is labeled with the value of Ai in t.

• For node v visited next, continue the same process: follow the outgoing edge

labeled with the value of the label(v) attribute found in t.

• When you reach leaf node l, the label label(l) will be the class(t).

C4.5 Algorithm: Induction of Decision Trees

Te C4.5. Algorithm for decision tree induction was originally proposed by Quin-

lan in [1].

Input/Ouput The C4.5 algorithm for decision tree induction has three parame-

ters:

Name I/O Explanation

D input the training dataset

A input the list of attributes

T ouput the constructed decision tree

2

Algorithm idea. The C4.5 Algorithm is a recursive decision tree induction al-

gorithm. The algorithm has the following three main steps:

1. Termination conditions. The algorithm has two termination conditions:

(a) D contains records with the same class label c. In this case, the algo-

rithm creates a tree that consists of a single node, and assigns to it the

class label c.

(b) A = ∅: there are no more attributes left to consider. In this case, the

algorithms creates a tree that consists of a single node, and assigns to

it the label of the plurality records in D.

2. Selection of the splitting attribute. The algorithm chooses the attribute Ai

to be used to split the dataset.

3. Tree construction. The algorithm does the following:

(a) Creates a tree node r labeled Ai.

(b) Splits the dataset D into dom(Ai) subsets D1, . . . D|dom(Ai)|, and re-

cursively calls itself for each subset Dj , with the reduced list of at-

tributes A− {Ai}.

(c) Creates |dom(Ai)| edges from r to the roots for trees T1, . . . , T|dom(Ai)|

returned by the recursive calls. Labels each edge with the appropriate

value from dom(Ai).

(d) Returns the constructed tree.

The pseudocode for the C45 Algorithm for categorical attributes is shown in

Figure 1.

Selection of the Splitting Attribute

The C4.5. Algorithm relies on an external function to identify the splitting at-

tribute on each step. In this section we discuss how to find splitting attributes.

Information Entropy. Consider a relational dataset D over a list of attributes

A = {A1, . . . , An, C}, where C is the class attribute of D. Let dom(C) =
{c1, . . . ck}. Let Di = {t ∈ D|class(D) = ci}. Thus, D = D1 ∪D2 ∪ . . . ∪Ds.

As Pr(C = ci) we denote the probability that a randomly chosen record t ∈ D

will have the class label of ci. We can see that

Pr(C = ci) =
|Di|

|D|
.

The entropy of the dataset D w.r.t. C is defined as follows:

entropy(D) = −
k
∑

i=1

Pr(C = ci) · log2(Pr(C = ci)).

Entropy is measured in bits.

(Note: In this computation, we assume that 0 · log2(0) = 0.)

3

Algorithm C45(D, A, threshold);

if for all d ∈ D: class(d) = ci then

// Step 1: check termination conditions

create leaf node r;

label(r) := ci;
T := r;

else if A = ∅ then

c := find most frequent label(D);

create leaf node r;

label(r) := c;

T := r;
else //Step 2: select splitting attribute

Ag := selectSplittingAttribute(A,D, threshold);

if Ag = NULL then //no attribute is good for a split

create leaf node r;

label(r) := find most frequent label(D);

T := r;
else // Step 3: Tree Construction

create tree node r;

T := r;

label(r) := Ag;

foreach v ∈ dom(Ag) do

Dv := {t ∈ D|t[Ag] = v};

if Dv 6= ∅ then

Tv := C45(Dv , A− {Ag}, threshold); //recursive call

append Tv to r with an edge labeled v;

endif

endfor

endif

endif

return T;

Figure 1: C4.5 algorithm for decision tree induction.

function selectSplittingAttribute(A,D,threshold); //uses information gain

p0 := enthropy(D);
for each Ai ∈ A do

p[Ai] := enthropyAi
(D);

Gain[Ai] = p0− p[Ai]; //compute info gain

endfor

best := arg(findMax(Gain[]));
if Gain[best] >threshold then return best
else return NULL;

function selectSplittingAttribute(A,D,threshold); //uses information gain ratio

p0 := enthropy(D);
for each Ai ∈ A do

p[Ai] := enthropyAi
(D);

Gain[Ai] := p0− p[Ai]; //compute info gain

gainRatio[Ai] := Gain[Ai]/enthropy(Ai); //compute info gain ratio

endfor

best := arg(findMax(gainRatio[]));
if Gain[best] >threshold then return best
else return NULL;

Figure 2: selectSplittingAttribute() functions using infomration gain and infor-

mation gain ratio measures.

4

Properties of entropy. Entropy of a random variable defined the predictability

of the observed results. If certain values are more likely, it is easier to predict the

outcomes. If all values are equally likely, it is much harder to do so.

The higher the entropy, the more unpredictable are the outcomes.

The entropy of a homogenous dataset in which each class label has the same

probability of occuring is log2 k, i.e., the number of bits necessary to represent k.

entropy(D) = −
k
∑

i=1

1

k
· log2

(

1

k

)

= − log2

(

1

k

)

·
k
∑

i=1

1

k
= log2 k

The enthropy of a dataset where only one class label out of k is present is 0.

entropy(D) = −
k−1
∑

i=1

0 · log2 0− 1 · log2 1 = 0.

Entropy measures the impurity of data. The higher the enthropy, the more im-

pure the data is.

Information Gain. Idea: we want to select the attribute that splits the dataset D

into most pure subsets. We introduce information gain measure. Given a dataset

D over the list A = {A1, . . . Ak} of attributes, the entropy of D after being split

using attribute Ai with domain dom(Ai) = {v1, . . . , vs} is defined as:

entropyAi
(D) =

s
∑

j=1

|Dj |

|D|
· entropy(Dj),

where Dj = {t ∈ D|t[Ai] = vj}.

The information gain achieved by the split is the difference between the en-

thropy of D before and after the split:

Gain(D,Aj) = entropy(D)− entropyAj
(D).

Information Gain Ratio. Information Gain Ratio is the normalized version of

the information gain measure:

gainRatio(D,Aj) =
Gain(D,Aj)

−
∑s

j=1

(

|Dj |
|D| · log2

|Dj |
|D|

)

(essentially, we normalize information gain by the ”entropy” of the split itself.)

Using Information Gain and Information Gain Ratio to select splitting at-

tributes

Figure 2 shows the two versions of the selectSplittingAttribute() function. The

first version uses the information gain measure to determine the splitting attribute,

while the second version uses the information gain ratio.

Both algorithms do the following:

5

1. Compute the enthropy of the current dataset.

2. Compute the enthropy after splitting the dataset using each of the available

attributes.

3. Find the attribute with the best information gain/information gain ratio.

4. If the information gain/information gain ratio exceed the threshold, the

attribute is returned. Otherwise, NULL is returned, as no attribute leads to a

significant improvement in the enthropy.

Classifier Evaluation

Accuracy Measures

Notation. Let T be a classifier constructed by any supervised learning algorithm

given a training set D.

Let D′ be a test set, drawn from the same data/distribution as D.

Let t ∈ D′. As T (t) we denote the class label supplied for t by the classifier T .

As class(t) we denote the actual class label of t.

As Dtrue we denote the set of all test cases for which our classifier provides correct

prediction:

Dtrue = {t ∈ D′|T (t) = class(t)}

As Derror we denote the set of all test cases for which our classifier provides

incorrect prediction:

Derror = {t ∈ D′|T (t) 6= class(t)}

Accuracy. The accuracy of the classifier T is:

accuracy(T) =
|Dtrue|

|D′|
.

Error rate. The error rate of the classifier T is:

errorRate(T) = 1− accuracy(T) =
|Derror|

|D|
.

Accuracy Measures for Binary Classification

Binary Classifiers. Many classifiers are binary: i.e., the class variable C has

only two values. A classifiaction problem with dom(C) = {c1, . . . ck}, k > 2 can

be transformed into k classification problems with class variables C1, C2, . . . , Ck,

such that, dom(Ci) = {0, 1}. Ci = 1 means C = ci.

6

Classification Errors. Consider a binary classification problem with the class

variable C , dom(C) = {0, 1}, where C = 1 is interpreted as ”record belongs to

class C” and C = 0 is interpreted as ”record does not belong to class C .

Let T be a classifier for C . Let D′ be a test dataset. Given t ∈ D, we can observe

four possibilities:

1. True Positive: T (t) = class(t) = 1;

2. True Negative: T (t) = class(t) = 0;

3. False Positive: T (t) = 1; class(t) = 0;

4. False Negative: T (t) = 0; class(t) = 1;

There are two types of errors of classification:

1. Type I error: a.k.a. error of commission a.k.a. false positive: classifier

incorrectly classifies a tuple as belonging to class C .

2. Type II error: a.k.a. error of omission a.k.a. false negative: classifier

incorrectly classifies a tuple as NOT belongingto class C .

Notation. Conisder the following notation:

1. DTP : set of all true positives in D′; TP = |DTP |;

2. DTN : set of all true negatives in D′; TN = |DTN |;

3. DFP : set of all false positives in D′; FP = |DFP |;

4. DFN : set of all false negatives in D′; FN = |DFN |;

Confusion Matrix. The information about the accuracy of a binary classifier is

usually arranged in a form of confusion matrix:

Classified Positive Classified Negative

Actual positive TP FN

Actual negative FP TN

Precision. Precision of the classifier is the percentage of the correctly positively

classified records in the set of all positively classified records:

precision(T) =
TP

TP + FP
.

Precision measures how accurately the classifier selects positive examples, it

reaches 100% when the classifier admits no false positives.

Recall. Recall of the classifier is the percentage of all correctly positively classi-

fied records in the set of all actual positive records:

recall(T) =
TP

TP + FN
.

Recall measures how successful the classifier is in correctly identifying all posi-

tive records. It reaches 100% when the classifier admits no false negatives.

7

Note: Precision and recall make sense only when combined together.

It is easy to build a classifier with 100% precision: T(t) = 0 for all t ∈ D′ guarantees

that. But this classifier will have recall of 0. It is easy to build a classifier with

100% recall: T(t) = 1 for all t ∈ D′ guarantees that. But this classifier will have

small precision.

PF. The PF measure is defined as:

PF (T) =
FP

FP + TN
.

PF measures the misclassification rate: the percentage of records not in class C

that was incorrectly classified.

F-measure. The F-measure is the harmonic mean of precision and recall:

F (T) =
2

1
precision(T) +

1
recall(T)

=
2 · precision(T) · recall(T)

precicion(T) + recall(T)
.

F-measure combines precision and recall into a single number by balancing

them against each other.

In some situations, one of the two measures (precision or recall) is more impor-

tant than the other. F-measure can be skewed to favor each. The F2-measure

below assumes recall is twice as valuable as precision. The F0.5-measure below

assumes precision is twice as valuable as recall.

F2(T) =
5 · precision(T) · recall(T)

4 ∗ precision(T) + recall(T)
.

F0.5(T) =
1.25 · precision(T) · recall(T)

0.25 ∗ precision(T) + recall(T)
.

The formula for Fβ , where β represents the relative importance of recall over

precision is:

Fβ(T) =
(1 + β2) · precision(T) · recall(T)

β2 ∗ precision(T) + recall(T)
.

Evaluation Techniques

In a typical situation, you are given a training set D, and are asked to produce a

classifier for it.

If all records from D are used to create a classifier, there will be no way to

INDEPENDENTLY test its accuracy.

8

Holdout set. Divide D into two sets: D = Dtrain ∪Dtest; Dtrain ∩Dtest = ∅.

Dtest is called the holdout set.

Create a classifier T using Dtrain as the training set. Test T using Dtest.

Holodout set selection:

• Random sampling. Select a fraction x. Randomly sample x% of records

from D, put them in Dtest.

Commonly, you use around 90% of D as the training set, reserving the re-

maining 10% for the holdout set.

• Time slices. If D consists of ”old” data and ”new” data, then, the training

set can include all of the ”old” data, while the holdout set can include the

”new” data. (e.g., in situations where new records appear every day).

Multiple random sampling. This technique is used when D is small.

• Select some number M of repetitions.

• Perform M random samplings of a holdout set from D. Run classifier con-

struction on the remaining set Dtrain. Compute the accuracy of the classi-

fier for the current sample.

• Compute the final accuracy as the mean accuracy over all samples.

Multiple random sampling allows us to avoid flukes (or, at least, to downgrade

their effects).

Cross-Validation. This is a variant of multiple random sampling that uses only

one random assignment of records, but performs multiple classifications.

• Select n – the number of slices of data in D.

• Using random sampling split D into n slices of equal (or almost equal) size.

• Peform n classification procedures. On step i, use slice Di as the holdout

set, while using all other n− 1 slices as the training set.

Note: Standard cross-validations used in practice are 10-fold, 5-fold and leave-

one-out cross-validations.

References

[1] J.R. Quinlan. C4.5: Program for Machine Learning, Morgan Kaufman,

1992.

9

