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Data Mining:

Clustering/Unsupervised Learning
k-Means Clustering

Definitions

Clustering. Clustering is the process of organizing data instances into groups

whose members are similar in some way.

Cluster. A cluster is a collection of data instances deemed to be similar to each

other and dissimilar to other data instances.

Data instance a.k.a. object a.k.a. data point.

Dataset. The dataset in a clustering task is a collection D = {x1, . . . , xn} of

data points over the set of attributes A = {A1, . . . , AM}.

Note: The key difference between clustering and classification tasks is that in

classification tasks, the dataset includes a class variable.

In clustering tasks, class variable is not available. The task is not to predict

the class of each data point, but to organize data points into groups by their

perceived similarity.

Classification is also known as supervised learning.

Clustering is known as unsupervised learning.

Example. Consider the four pictures in Figure 1.

• Scatterplot (a) shows an example of three easy-to-distinguish clusters with

clear boundaries and clear membership.

• Scatterplot (b) shows an example of two clusters that are relatively easy to

identify. However, the boundary and the exact membership in the clusters is
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Figure 1: Clusters in data.

subject to discussion and not all algorithms may be able to determine cor-

rectly the desired cluster for each poiint.

• Scatterplot (c) shows an example of two clusters, where membership (in one

of the two clusters) is determined by more than just proximity. Clustering

algorithms based solely on assigning points to clusters based on their prox-

imity to each other (or to some other locations) may be unable to identify the

”ring” cluster properly.

• Scatterplot (d) shows an examples of two clusters with a ”bridge” between

them, which makes it hard for both the algorithms and the humans to identify

membership of certain data points. Additionally, the diagram contains three

outliers: data points that lie well outside any cluster. Clustering algorithms

that do not properly detect outliers may be unable to detect proper cluster

boundaries because of it.

Clustering Algorithms

Partitional Algorithms: Clustering algorithms that simply separate the dataset

into distinct clusters.

Hierarchical Algorithms: Clustering algorithms that create structured (hierarchi-

cal) collections of clusters.

Density-Based Algorithms: Clustering algorithms that expand clsuters based on

the density of points in specific ”neighborhoods”.
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Partition Algorithms: k-Means Clustering Algorithm Family

Historical Note. The k-Means Clustering algorithm has been discovered and

rediscovered by researchers in different fields many times. It appeared in the works

of Lloyd (1957) [1], Forgey (1965)[?], Friedman and Rubin (1967) and McQueen

(1967).

Applicability. Dataset D = {x1, . . . , xn}, xi = (xi1, . . . xiM ) ∈ Rm.

In order to be able to use k-means clustering algorithm the notion of the mean

must exist for the domain of each attribute Ai.

Algorithm Outline. The algorithm takes as input the dataset D = {x1, . . . xn}
and an integer k — the number of clusters to build.

The algorithm proceeds as follows.

1. Select k initial cluster centroids.

2. On each step, for each data point compute its distances from each of the

cluster centroids and assign it to the closest centroid.

3. Recompute cluster centroids.

4. Steps 2 and 3 are repeated until the process converges.

Details: cluster centroids. Initial centroid selection:

• Pick k random data points from the datasets. (seeds).

• Use the following selection procedure SelectCentroids:

1. Compute the centroid c of the entire dataset D.

2. First centroid, m1 is the x ∈ D, such that d(m1, c) = maxx∈D(d(x, c))
(the point furtherest away from the centroid).

3. Pick m2 such that d(m1,m2) = maxx∈D(d(m1, x)).

4. Pick mi, such that
∑i−1

j=1
(d(mj ,mi)) = maxx∈D

∑i−1

j=1
(d(mj , x)).

• Select a sample S ⊂ D, |S| > k. Perform the procedure described above on

S. (This helps fight outliers).

• Pre-select the seeds before starting the algorithm (and, for example, locate

them as the first k data points in D).

Centroid recomputation:

• Let mt,1, . . . mt,k are the k centroids on step t > 1. Let Ct,1, . . . , Ct,k be

the k clusters assigned on step t. The new centroids mt+1,1, . . . ,mt+1,k are

computed as means of points in their clusters on previous iteration:

mt+1,i =
1

|Ct,i|

∑

x∈Ct,i

x.
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Algorithm diskKMeans(D,k);

begin

m[] := SelectInitialCentroids(D,k);

repeat

for j := 1 to k do

s[j] := (0, 0, 0, . . . , 0); // s[] - family of vectors of size dim(D)

num[j] := 0; // num[] - number of points in each cluster

cl[j] := ∅; // cl[] - actual clusters

endfor

foreach x ∈ D do

cluster := argminj=1,...,k(dist(x,mj)); // assign x to the cluster

cl[cluster] := cl[cluster] ∪ {x};

s[j] := s[j] + x;

num[j] := num[j] + 1;

endfor

for j := 1 to k do m[j] := s[j]
num[j] ;

until isStoppingCondition(m[],cl[]) = true;

output cl[];
end

Figure 2: Disk version of the k-Means clustering algorithm.

Stopping criteria. The k-means algorithm can use any of the following stopping

(convergence) criteria:

1. no (or minimum) reassignment of points between clusters;

2. no (or minimum) change in cluster centroids;

3. insignificant decrease in the sum of squared error:

SSE =
k∑

j=1

∑

x∈Ct,j

d2(x,mt,j).

Disk Version of the k-means clustering algorithm. Figure 2 has the pseudocode

for a version of the k-means clustering algorithm that works with data stored in

secondary storage (on disk).

Features of the disk-based version:

• One data scan per iteration.

• Small memory footprint. This is a tuple-at-a-time algorithm. Only one disk

block is necessary for the scan.

• Cluster assignment is not used in the code, except for checking stopping

conditions and the final return. If necessary, it can be maintained in the

dataset itself. This will add an extra disk I/O operation per disk block per

iteration.

• Alternatively, if the stopping condition can be checked without observing a

full set of points in each cluster (e.g., stoppage condition is based on changes

in centroids or sum of squared error), we can modify the algorithm as follows

to minimize the I/Os:
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– eliminate cl[] from the algorithm. Assignment of the data point to clus-

ter is computed, but not recorded beyond the updates to num[] and

s[].

– After the stoppage condition is satisfied, rerun the clustering process

(the body of the repeat loop) one more time, but this time, use cl[] to

record and output clusters.

This revision will require an extra scan of the data at the end (rather than

doubling the I/O cost).

Strengths and Weaknesses of the k-Means Clustering Algorithm

Strengths. The key strengths are:

• Simplicity.

• Efficiency.

Time Complexity: O(tkn) (n = |D|, k – number of clusters, t – number of

iterations)

Data Complexity: t ·B(D) (B(D) — number of disk blocks in holding D).

Weaknesses and addressing them.

• Applicability. Mean of a set of data points must be computable.

Note: A variation of k-means clustering algorithm called k-modes clus-

tering can be used with categorical data.

• Need for k. The user must ”guess” proper k. If k is not the number of

true clusters in the dataset, the k-means clustering algorithm may perform

poorly.

Example. Figure 3.(a). The dataset has two clusters (circles). If k-means

clustering is run for k = 3, one of the reported clusters may (will) combine

points from two ”real” clusters.

Note: Run k-means clustering multiple times with increasing values of k.

Typically, the number of clusters is small enough to make this feasible.

• Sensitivity to initial centroid choice. Poorly selected centroids may yield

bad results even when clusters are clearly defined.

Example. Figure 3.(b). If centroids are selected randomly, two data points

from the same cluster may be selected (solid boxes). Dashed boxes show the

clusters computed by the k-means clustering algorithm with this selection

of initial centroids. Figure 3.(d) shows the results of the k-means clustering

algorithm when initial centroids are picked from different real clusters.

Dealing with initial centroid choice sensitivity.

– Random selection works well when |D| is large.

– Use procedure SelectCentroids described above. It attempts to place

initial centers as far away from each other as possible.
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Figure 3: Weaknesses of k-means clustering illustrated.

– Manually select seeds prior to running k-means clustering.

• Sensitivity to outliers.

An outlier is a data points located very far away from other data

points (i.e., isolated).

The k-means clustering algorithm does not detect outliers. Outliers are

assigned to clusters on each step, and may affect undue influence on the lo-

cation of the cluster’s centroid. This may yield incorrect cluster boundaries.

Example. Figure 3.(c). The data set consists of two clusters and a single

outlier. If the outlier is detected, two clusters can be properly separated.

Otherwise, the outlier gets assigned to one of the clusters, ”pulls” the clus-

ter centroid away from the true position, and allows the second cluster to

”annex” some of the points of the first cluster.

Dealing with outlier sensitivity.

– Outlier detection during k-means clustering. Discover points that

are too far away from the centroid of their cluster and remove these

points from consideration. Use a specific threshold to determine if a

point is too far away from the cluster centroid.

– Random sampling. Randomly sample the data, and cluster the sam-

ple. The probability of selecting an outlier into a sample is very small.
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• Cannot properly detect clusters with close centers. If two clusters have

centers near each other, the k-means clustering algorithm will note be able

to properly detect them.

Example. Figure 1.(c).The two clusters: the outer ring and the inner kernel

have centers that are located close to each other. Therefore, instead of recog-

nizing the inside/outside clusters, k-means clustering will yield a left/right

or top/bottom or similar split (based on the initial centroid assingments).

Essentially, the k-means clustering algorithm replaces the problem of sep-

arating points in different clusters with the problem of separating cluster

centroids. Thus, in this example it will move towards increasing the distance

between cluster centers.

Dealing with complex cluster shapes/co-centered clusters.

– Sometimes, it is not a problem. (due to application/dataset specifics)

– Outside of the latter observation, there is really no way to compensate

for this.

Representation of Clusters

Cluster = data points. Represent each cluster as the collection of points in it.

• Good for applications interested in properties of individual data points.

• Bad for applications interested in simple, intuitive descriptions of discovered

clusters.

Cluster = centroid + radius. Each cluster is represented by a centroid and a

radius.

• Good, because succinct (and simple).

• Information is available from the k-means clustering algorithm. No new

computations are needed.

• Bad, because crude.

• May yield cluster overlaps.

Cluster = Class. Each data point is assigned a class label derived from the clus-

ter it has been assigned. The new dataset D′ constructed this way is used to train a

classifier that has explanatory power (e.g., a decision tree or a set of class associa-

tion rules).

The cluster is represented as the subset of classifier/set of rules identifying it in the

classifier model.

• Good, because of explanatory power. (We may be able to articulate what

the cluster really represents.)
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• Bad, because time- and resource-consuming. Requires significant extra ef-

fort (see: Learning, Supervised.).

• May fail to produce meaningful explanation.

Cluster = frequent values. Represent each cluster via a small subset of fre-

quently occuring or typical data points.

• Good, because follows the ”Stuff like this” intuition.

• May take some extra work to identify good representatives.

• May allow for comparison of new data points.

• But may also miss important information about the structure of the cluster

(e.g., Figure 1.(c)).
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