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Link Analysis in Graphs: PageRank

Link Analysis

Graphs

Recall definitions from Discrete math and graph theory.

Graph. A graph G is a structure 〈V,E〉, where

• V = {v1, . . . , vn} is a finite set of vertices or nodes;

• E = {(v,w)|v,w ∈ V }, is a set of pairs of vertices called edges.

Undirected and directed graph. In a directed graph, an edge e = (v,w) is

interpreted as a connection from v to w but not a connection from w to v.

In an undirected graph, an edge e = (v,w) is interpreted as a connection between

v and w.

Representations. Graphs can be represented in a number of ways:

• Set notation. A representation of a graph that follows the definition above.

Example. G = 〈{A,B,C,D,E}, {(A,B), (A,C), (A,E), (B,C), (B,E), (C,D)}〉.

• Graphical representation. A graph can be represented as a drawing. Each

node is drawn as a point or circle on a plane, and each edge is a line con-

necting the representations of its two vertices. To draw a directed graph,

arrows are added to the edge lines to point from the first vertex in the edge

to the second.

Example. Figure 1 shows the graphical representations of G in the cases

when G is directed and undirected.
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Figure 1: Undirected (left) and directed (right) graphs.

• Matrix. A graph can be represented as an adjacency matrix MG whose

rows and columns are vertices. If edge (vi, vj) ∈ E, MG[i, j] = 1, other-

wise, MG[i, j] = 0. Undirected graphs have symmetrical adjacency matrices

(or, alternatively, only uppre diagonal portions of those matrices are consid-

ered). Matrices for directed graphs need not be symmetric.

Example. The adjacency matrices for graph G in undirected and directed

cases:

Undirected G:
G A B C D E

A — 1 1 0 1

B 1 — 1 0 1

C 1 1 — 1 0

D 0 0 1 — 0

E 1 1 0 0 —

Directed G:
G A B C D E

A — 1 1 0 1

B 0 — 1 0 1

C 0 0 — 1 0

D 0 0 0 — 0

E 0 0 0 0 —

• Lists. A graph can be represented by an associative array of adjacency lists.

The domain of the array AG is V . For v ∈ V , AG[v] lists all w ∈ V , such

that (v,w) ∈ E.

Example. The adjacency lists for the undirected and directed versions of

graph G are shown below:

Undirected G:
A: B,C,E

B: A,C,E

C: A,B,D

D C

E A,B

Directed G:
A: B,C,E

B: C,E

C: D

D

E

Labeled Graphs. A labeled graph G is a graph G = 〈V,E〉, where E =
{(v,w, l)}, where v,w ∈ V are vertices connected by the edge and l is a label.

The domain for the set of possible labels is usually specified up-front.

Egde labels can be used to specify the length of a connection, cost to traverse the

edge, type on edge and many other properites.

Graphs can have additional edge and vertex labels.
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Properties of Graphs.

Path. A path in a graph G = 〈V,E〉 is a sequence p = e1, e2, . . . es of edges,

e1 = (w1, w
′

1
), . . . , es = (ws, w

′

s), such that w′

1
= w2, w

′

2
= w3, . . . w

′

s−1
= ws.

In undirected graphs p is called a path between w1 and w′

w. In directed graphs p

is called a path from w1 to w′

s.

Connected Graphs. A graph G = 〈E,G〉 is called connected iff for any pair

vi, vj ∈ V , there exists a path p between vi and vj (or, from vi to vj).

Shortest path. The length of a path p in a graph G is the number of edges in it.

A shortest path between two vertices v and w is a path that starts in v and ends in

w with the smallest length (number of edges in it).

Complete graphs. A graph G = 〈V,E〉 is complete iff for all vertices v,w ∈ V ,

(v,w) ∈ E.

Vertex degrees. Let G = 〈V,E〉 be an undirected graph. The degree of a node

v ∈ V in G is defined as

degree(v) = |{(v, v′) ∈ E|v′ ∈ V }|,

i.e., it is the number of edges that connect v to other vertices in the graph.

Let G = 〈V,E〉 be a directed graph. The in-degree of a node v ∈ V in G is

defined as

in− degree(v) = |{(v′, v) ∈ E|v′ ∈ V }|,

i.e. the number of edges in G that end at v.

The out-degree of a node v ∈ V in G is defined as

out− degree(v) = |{(v, v′) ∈ E|v′ ∈ V }|,

i.e., it is the number of edges that start in v.

Graphs and Social Networks

Social entity. A social entity is a community, organization or setting involving a

collection of interacting actors.

Actors. In different social entities actors may be:

• Humans. (e.g., employees in a company).

• Groups of humans (e.g., sports teams).

• Legal or political entities (e.g., companies or states).

• Inanimate ojects (e.g., individual computers).

• Virtual objects (e.g., web pages or files).
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Social Network. A social network of a social entity is a structure documenting

interactions between actors within the entity.

Typically, social networks are represented as graphs. A social network graph

SN = 〈V,E〉 is constructed as follows:

• V is the set of actors of the social entity.

• E is the set of interactions between the actors in the entity. I.e., (v,w) ∈ E

iff, actors v and w have an interaction that is tracked by the social network.

Interactions can be symmetric, in which case SN is an undirected graph, or

assymetric, in which case SN is a directed graph.

Examples. Examples of social networks:

• Business interactions. Email exchanges between employees of a company.

• Social interactions. ”Friendship” relationship on facebook.

• Academic interactions. Citation of a paper by another paper. Co-authoring

of papers by researchers.

• Relationship interactions. Kinship relationships between people.

• Kevin Bacon game. Actors having roles in the same movie.

• Web page interactions. Links from one web page to another.

PageRank via Web Traversal

Web Search specifics. Compared to ”traditional” Information Retrieval, web

search has the following properties:

• Huge document collection. (world wide web is the biggest document col-

lection).

• No ”golden set”. Web is unobservable, hence, we cannot find the sets of all

relevant documents for the queries.

• Only few links visited. Only the top 20-40-100 links are of any importance.

Users rarely venture beyond in search of relevant web pages.

• Web pages are linked! Can this be used to improve search?

• Web page owners are not trustworthy. Search engine spamming and

(somewhat less horrible) search engine optimization attempt to circumvent

the results of web search on certain queries.

Prestige. Idea: a good web search engine must combine discovery of pages that

contain all/most query terms with robust ranking, which promotes important,

high-quality, reliable pages to the top. Prestige is a measure of web page impor-

tance.
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PageRank. PageRank is a procedure for computing the prestige of each web

pages in a collection.

There is a number of definitions/derivations for the PageRank computation. To

illustrate how it works, we will use the more simple definition.

Web as a graph. We treat World Wide Web as a social network, where individ-

ual web pages (urls) are nodes, or actors, and hypertext links between them are

interactions.

More formally, consider the directed acyclic graph GWWW = {V,E}. The set V

of vertices is the list of individual web pages (urls). An edge (v,w) ∈ E iff the

web page v has in its body an anchor tag <a href="URL"> where URL is the

URL of the web page w.

Given a web page i ∈ V , The set I(i) of in-links is the set of all edges e ∈ E, such

that e = (v, i) for some v ∈ V .

Given a web page i ∈ V , the set O(i) of out-links is the set of all edges e ∈ E,

such that e = (i, v) for some v ∈ V .

Note: often, only the in-links and out-links from web pages located on a different

site are included in I(i) and O(i).

Surfing the web. PageRank is a way of modeling the behavior of a web surfer in

a single browser window. In particular, PageRank models the following traversal:

PageRank Traversal:

1. The user starts surfing the web from some, randomly selected page from V a.

2. On each step, the user observes some web page i. With probability d ∈ (0, 1) (s)he chooses

to click on any of the links available on the page (assuming the page has at least one out-

link).

3. Each link found on the page i can be selected with the same probability.

4. With probability 1 − d the user gets tired of surfing the web by following links and instead

goes directly to a randomly selected web page from the collection V .

5. If a web page has no out-links, the user simply goes to a randomly selected web page from

the collection V .

aPageRank actually allows to relax this condition and start from some page, randomly selected from a predefined

collection of pages: a (typically small) subset of the entire web page collection.

PageRank defined. The PageRank of a page i ∈ V is the probability of even-

tually reaching page i via the traversal procedure outlined above[1].

Deriving PageRank

Let p(i) be the probability of reaching web page i (i.e., the PageRank of page

i). Let I(i) = {j1, . . . js} be the set of all web pages which link to i. Let the
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probabilities of reaching each of those pages be p(j1), . . . , p(js) respectively. Also,

let O(jk) be the set of all outbound edges from jk.

Assumption: All web pages in V have at least one out-link.

• Suppose we have reached page j1. From that page, with probability d, we

elect to follow on of the links. j1 has |O(j1)| out-links on it, so, with prob-

ability

p(i|j1, follow links) =
1

|O(j1)|

we can reach web page i. Since p(follow links) = d, we obtain:

p(i|j1) = d ·
1

|O(j1)|
.

• Similar reasoning for all other j ∈ I(i) yields

p(i|jk) = d ·
1

|O(jk)|
.

• We can reach page i in one of only two ways:

1. By following a link from one of j1, . . . , js.

2. By randomly selecting i when the user chooses to jump (i.e. not follow

a link from a current page).

• We obtain the following formula for computing the probability p(i):

p(i) = (1− d) ·
1

|V |
+ (p(i|j1) · p(j1) + . . . + p(i|js) · p(js)).

Figure 2 illustrates how these probabilities are computed. From here, substi-

tuting p(i|jk) we obtain:

p(i) = (1− d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk |
· p(jk).

Thus,

pageRank(i) = (1− d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk |
· pageRank(jk). (1)

Note, that this is a recursive definition.

Computing PageRank

From formula (1), we see that in order to compute PageRank of a page, we need to

know the PageRank of its ”ancestors”. A standard way to model such computation

is to perform it iteratively.
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Figure 2: Computing the probability of reaching a web page.

PageRank via iterative process. The traditional iterative algorithm for PageR-

ank uses the following iterative procedure:

pageRank0(i) =
1

|V |
for alli ∈ V (2)

pageRankr(i) = (1− d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk |
· pageRankr−1(jk). (3)

Stop when :

(

∑

i∈V

(pageRankr(i)− pageRankr−1(i))

)

< ǫ (4)

References

[1] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry

(1998). The PageRank citation ranking: Bringing order to the Web.

Technical Report, Department of Computer Science, Stanford University.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

7


