
. .

Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:

Clustering/Unsupervised Learning
Density-Based Clustering. DBSCAN Algorithm

Density-Based Clustering. Preliminaries

Density-based clustering algorithms is a family of algorithms that determine

density-based clusters in the data. A formal definition of a density-based cluster

is supplied below.

ε-neighborhood. Let D = {d1, . . . , dn} be a set of data points, and let dist() be

a distance function for points in D1

Given a number ε, an ε-neighborhood point d ∈ D is defined as:

Nε(d) = {di ∈ D|di 6= d, dist(d, di) ≤ ε}

Core points. Given an integer minpts > 0, a point d ∈ D is a core point in D

if

|Nε(d)| ≥ minpts,

that is, if the ε-neighborhood of d contains minpts or more points.

Border (boundary) points. A point d ∈ D is a border (boundary) point if

|Nε(d)| < minpts,

but

(∃d′ ∈ D)(d ∈ Nε(d
′),

i.e., if the ε-neighborhood of d contains fewer than minpts points, but d itself is

in a ε-neighborhood of some other point d′ ∈ D.

1A similar definition will also work for a similarity function.

1

Noise points. A point d ∈ D is a noise point if it is neither core point nor

boundary point in D.

Density-reachability. Given the density radius ε and the minimum density minpts,

a point d′ ∈ D is directly density-reachable from point d ∈ D if d′ ∈ Nε(d).

d′ is density-reachable from d if there exists a chain of points d = d1, d2, . . . , dk =
d′, such that di ∈ Nε(di−1).

Note: Density-reachability is an assymetric relationship (a boundary point x may

be density-reachable from a core point y, but not the other way around).

Density connectivity. Two points d ∈ D and d′ ∈ D are density connected, if

there exists a core point f ∈ D, such that both d and d′ are density-reachable from

f .

Density-based cluster. A density cluster D′ ⊂ D is any maximal set of points

that are density-connected to each other.

DBSCAN

DBSCAN is a key algorithm for discovery of density-based clusters. DBSCAN

takes as input a dataset D, a distance function dist() that is defined on all pairs of

points from D2 and two parameters:

• ε: the radius of the ε-neighborhood in which DBSCAN will search for data

points;

• minpts: the smallest number of points in a ε-neighborhood of a point, for it

to be declared a core point.

The pseudocode for DBSCAN is shown in Figure 1.

The algorithm works as follows:

• Core point discovery. First, DBSCAN scans through the entire dataset d

and determines based on ε and minpts parameters, the list of core points.

• Cluster construction. Each cluster is constructed as follows. The algoirithm

pulls a yet-to-be visited core point, and recursively computes all density con-

nected points to it. It then proceeds to search for the next unvisited/unlabeled

core point until it runs out of core points to expand.

• Output. At the end, the algorithm returns the breakdown of points into

clusters, as well as the lists of core, boundary and noise points.

2Usually, DBSCAN uses Eucledian distance, but it can also use other distance functions. Also,

a version of DBSCAN that uses similarity measures rather than distance measures, can be obtained

from the pseudocode shown in these notes in a straightforward way.

2

Algorithm DBSCAN(D,dist(), ε, minpts)

begin

Core := ∅;

for each di ∈ D do // find core points

Compute Nε(d);
cluster(di) := ∅; // initialize cluster assignment for the point

if |Nε(di)| ≥ minpts then Core := Core ∪ {di};

end for

CurrentCluster := 0; // initialize current cluster label

for each d ∈ Core do

if cluster(d) = ∅ then

CurrentCluster := CurrentCluster + 1; //start a new cluster

cluster(d) := CurrentCluster // assign first point to the cluster

DensityConnected(D, d, Core, CurrentCluster); // find all density connected

points

endif

end for

ClusterList := ∅

for k := 1 to CurrentCluster do //assemble clusters

Cluster[k] = {d ∈ D|cluster(d) = k};

ClusterList := ClusterList ∪Cluster[k];
end for

Noise := {d ∈ D|cluster(d) = ∅}
Border := D − (Noise ∪ Core)
return ClusterList, Core, Border, Noise

end

function DensityConnected(D, point, Core, clusterId)

begin

for each d ∈ Nε(point) do // add all neighbors to cluster

cluster(d) := clusterId;

if d ∈ Core then DensityConnected(D, d, Core, clusterId);

//recursivly do it for each core point discovered

endfor

end

Figure 1: Pseudocode for DBSCAN algorigthm

3

