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Machine Learning.
Part 1. Linear Regression

Machine Learning: Regression Case.

Dataset. Consider a collection of features X = {X1, . . . ,Xd}, such that dom(Xi) ⊆
R for all i = 1 . . . d1. Consider also an additional feature Y , such that dom(Y ) ⊆
R

Let X = {x1, . . . ,xn} be a collection of data points, such that (∀j ∈ 1 . . . n)(xj ∈
dom(X). Let y = {y1, . . . , yn} such that (∀j ∈ 1 . . . n)(yj ∈ dom(Y )). We write

X as

X =















X1 X2 . . . Xd

x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
. . .

...

xn1 xn2 . . . xnd















We also write xi = (xi1, . . . , xid).

Machine Learning Question. We treat X as the independent or observed vari-

ables and Y as the dependent or target variable.

Our goal can be expressed as such:

Given the dataset X of data points, find a relationship between the

vectors xi of observed data and the values yi of the dependent variable.

Regression. Representing the relationship between the independent variables X1, . . . ,Xd

and the target variable Y (based on observations X) as a function

1Later, we will relax this condition.

1



f : dom(X1)× . . . × dom(Xd) −→ dom(Y )

or, more generally, as

f : Rd −→ R

is called regression modeling, and the function f that represents this relationship

is called the regression function.

Linear Regression (Multivariate Case)

To save space, we discuss multivariate regression case directly.

Linear Regression. A regression function

f(x1, . . . , xd) : R
n −→ R

is called a linear regression function iff it has the form

y = f(x1, . . . , xd) = β0 + β1x1 + β2x2 + . . . βdxd + ǫ.

The values β1, . . . , βn are the linear coefficients of the regression function, oth-

erwise known as feature loadings.

The value β0, otherwise known as the intercept is the value of the regression

function on the vector x0 = (0, . . . , 0) : f(0, 0, . . . , 0) = β0.

The value ǫ represents error. The error is assumed to be independent of our

data (vector (x1, . . . xn)) and normally distributed with the mean of 0 and some

unknown standard deviation σ2:

ǫ ∼ N(0, σ2)

The linear regression equation may be rewritten as

y = xTβ + ǫ

where xT = (1, x1, . . . , xd) and β = (β0, β1, . . . , βd).

Finding the best regression function. How do we find the ”right” f(x)?

We can use the dataset X = {x1, . . . ,xn} for guidance.

Assume for a moment that we already know the values for coefficients β̂0, β̂1, . . . , β̂n
for some linear regression function f(). Then, this function can be used to predict

the values ŷ1, . . . , ŷn of the target variable Y on inputs x1, . . . ,xn: respectively:

ŷ1 = x1
T β̂ = β̂0 + β̂1x11 + β̂2x12 + . . .+ βdx1d

ŷ2 = x2
T β̂ = β̂0 + β̂1x21 + β̂2x22 + . . .+ β̂dx2d

. . .
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ŷn = xn
T β̂ = β̂0 + β̂1xn1 + β̂2xm2 + . . . + β̂dxnd

If we, without loss of generality assume that matrix

X

is

X =











1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
...

...
. . .

...
...

1 xn1 xn2 . . . xnd











then we can rewrite the expressions above using the linear algebra notation:

ŷ = Xβ̂

Thus, for each vector xi we have the regression prediction ŷi and the true value

yi.

Our goal is to minimize the error of prediction, i.e., to minimize the

overall differences between the predicted and the observed values.

Error. Given a vector xi, the prediction error error(xi) is defined as:

error(xi) = yi − y′i = yi − xi
T = ǫi

Maximum Liklihood Estimation. Under our assumptions, ǫi are independently

identically distributed according to a normal distribution:

ǫi ∼ N(0, σ2) =
1√
2πσ2

e
−

(yi−x
i
T β)2

2σ2

The probability of observing the vector

ǫ = (ǫ1, . . . , ǫn) = ((y1 − x1
Tβ), . . . (yn − xn

Tβ))

can therefore be expressed as follows:

P (ǫ|β, σ2) =

n
∏

i=1

1√
2πσ2

e
−

(yi−x
i
T β)2

2σ2

The log liklihood function can be represented as follows:

ℓ(β, σ) = −n

2
log(2π) − n

2
log(σ2)− 1

2σ2

n
∑

i=1

(yi − xiβ)
2 =

−n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n
∑

i=1

(y −Xβ)T (y −Xβ)
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We can maximize the log liklihood function by taking the partial derivatives of

ℓ(β, σ) and setting the derivatives to 0.

For the purpose of prediction, we need to estimate the values β = (β0, β1, . . . , βd),
but we actually do not need an estimate for the variance σ2.

We need σ2 estimated though if we want to understand how well our linear re-

gression model matches (fits) the observed data.

Estimating Regression Coefficients. The partial derivatives of L(β, σ) on βi
parameters are:

∂L

∂βj
=

1

σ2

m
∑

i=1

xij(yi − xi
Tβ) =

1

σ2

n
∑

i=1

xij(yi − (β0 + β1xi1 + . . .+ βnxid))

If we set it to zero, we get

m
∑

i=1

xij(yi − xi
Tβ) = 0

Generalizing for the entire β, we can get

∂ℓ

∂β
=

1

σ2
XT (y −Xβ),

which, when set to a zero vector, gives us:

XT (y −Xβ) = 0

Solving for β we get

XTy = XTXβ,

which yields the closed form solution for β:

β̂ = (XTX)−1XTy.

Least Squares Approximation. What type of an estimator did we just obtain?

Let us consider a numeric-analytical approach to predicting coefficients β. In

predicting β, we want to minimize the error resulted in our prediction.

There is a wide range of ways in which error can be considered ”minimized”.

The traditional way of doing so is called the least squares method. In this method

we minimize the sum of squares of the individual errors of prediction.

That is, we define the overall error of prediction Error(X) as following:

Error(X) = Error(x1, . . .xn) =

n
∑

i=1

error2(xi) =
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=

n
∑

i=1

(yi − ŷi)
2 =

n
∑

i=1

(yi − (xi
Tβ))2

Among all β vectors, we want to find the one that minimizes Error(X).

If we fix the dataset X and instead let β vary, the error function becomes a function

of β:

L(β) =

m
∑

i=1

(yi − (xi
Tβ))2

We want to minimize

L(β)

subject to β:

min
β

L(β)

Solving the minimization problem. L(β) is minimized when the derivative of

L() is equal to zero. This can be expressed as the following d+ 1 equations:

∂L

∂β0
= 0

∂L

∂β1
= 0

∂L

∂β2
= 0

. . .

∂L

∂βd
= 0

∂L

∂βj
=

∂
(
∑m

i=0(yi − (xi
Tβ))2

)

∂βi
=

= 2

m
∑

i=0

xij(yi − (β0xi0 + . . .+ βnxin) = 0

The system of linear equations generated can be described as:

XT (y −Xβ′) = 0

Its solution is

β̂ = (XTX)−1XTy

This can be rewritten as

β̂′ = (XTX)−1XTy =

(

n
∑

i=1

xixi
T

)

−1 n
∑

i=1

xiyi
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We can then estimate the values of y for x1, . . . ,xm:

ŷi = xi
T β̂ = xi · (XTX)−1XTy,

or:

ŷ = Xβ̂ = X(XTX)−1XTy = Py

for P = X(XTX)−1XT .

Conclusion. If we look at the Maximum Liklihood estimator we obtained and

at the least squares estimator, we will notice and important fact – it is the same

estimator.

Goodness-of-fit. You can test how good your regression model is by asking what

percentage of variance the regression is responsible for. This is called a goodness-

of-fit test, and the metric estimating the goodness of fit is called the R2 metric, and

is computed as follows:

R2 =

∑m
i=1(ŷi − µy)

2

∑m
i=1(yi − µy)2

Tricks. We have two equations describing the solution for the estimates β.

The first equation is

XTXβ = XTy.

The second equation is

β = (XTX)−1XTy.

The advantage of the second equation is that it provides a direct way of com-

puting β.

The disadvantage is the fact that the computation involves taking the inverse of

a matrix.

The first equation is a linear equation system. While it does not give a closed

form solution, it can be leveraged in actual computations, if you are relying on a

linear algebra package (such as NumPy) for your linear algebra computations. In

such a case, using the solver for a system of linear equations rather than a function

that inverts a matrix is preferrable.

Linear Regression with Categorical Variables

The specification for linear regression assumes that all variables X1, . . . ,Xn are

numeric, i.e., dom(Xi) ∈ R. Sometimes, however, some of the variables in the set

X are categorical.
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Nominal Variables Case. LetXi be a nominal variable with the domain dom(Xi) =
{a1, . . . , ak}. We proceed as follows.

• Select one value (w/o loss of generality, ak) as the baseline.

• For each value a ∈ {a1, . . . , ak−1} create a new numeric variable Xa.

• Let the new set of variables be X′ = (X− {Xi}) ∪ {Xa1 , . . . Xak−1
}

• represent values a1, . . . , ak−1 as vectors

a1 = (1, 0, 0, . . . , 0)

a2 = (0, 1, 0, . . . , 0)

. . .

ak−1 = (0, 0, 0, . . . , 1),

and represent value ak as the vector ak = (0, . . . , 0)

• Replace each vector xj = (x1, . . . , xi−1, al, . . . , xd) with vector x′

i = (x1, . . . , xi−1,al, xd).

• Perform linear regression from X ′ to y.

Ordinal Variables Case. Let Xi be an ordinal variable with domain dom(X) =
{1, 2, . . . , k}2. We replace Xi as follows.

• Select one value (w/o loss of generality, ak) as the baseline.

• For each value j ∈ {1, . . . , k − 1} create a new numeric variable Xij .

• Let the new set of variables be X ′ = (X − {Xi}) ∪ {Xi1, . . . Xik−1}

• Represent values 1, . . . , k − 1 of Xi as vectors

a1 = (1, 0, 0 . . . , 0)

a2 = (1, 1, 0 . . . , 0)

. . .

ak−1 = (1, 1, 1, . . . , 1),

and represent the value Xi = k as the vector ak = (0, 0, 0, . . . , 0).

• Replace each vector xj = (x1, . . . , xi−1, l, . . . , xd)with vector x′

i = (x1, . . . , xi−1,al, xd).

• Perform linear regression from X ′ to Y .

2Without loss of generality, we can represent all ordinal domains this way.
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Basis Expansion

Given a set of features X = {X1, . . . ,Xd}, and a dataset {(xi, yi)} = (X,y), we

can construct a least-squares linear regression using the features X1, . . . Xd.

However, we can also transform features.

Polynomial basis expansion. Given a feature Xi, add features X2
i , . . . ,X

m
i to

the list of features, and represent the output as

y = β0 + x1β1 + . . .+ βi1xi + βi2x
2
i + . . . + βimxmi + βi+1xi+1 + . . .+ βdxd

This can be applied to any number of features from X.

Interactions. Let Xi and Xj be two independent variables in X. We can add a

feature Xij = XiXj to the model. If we want to build a linear regression model

that accounts for interactions between all pairs of features, the expression will look

as follows:

y = β0+x1β1+. . .+xnβn+x1x2β12+. . .+xi−1xiβ(i−1)i = β0+

d
∑

i=1

xiβi+

d
∑

i=1

d
∑

j=1

xixjβij

General Expansion. Let f1(x), . . . , fs(x) be efficiently computable functions

over dom(X1)× . . . dom(Xn). We can consider the regression of the form:

y = β0 + f1(x)β1 + f2(x)β2 + . . .+ fs(x)βs.

Note. These regressions are non-linear in X, but they are linear in β. There-

fore, the standard least squares regression techniques will work.

Evaluation

How accurate is the regression model? This can be measured in a number of

ways.

Training Error. Training error, or SSE is the target function we are optimizing:

SSE =

m
∑

i=1

(yi − xi
T β̂)2

Problem: overfit for more complex models.

Solution: Look for ways to penalize complexity.
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Akaike Information Criterion (AIC). AIC chooses the model with the lowest

value of

AIC =
n
∑

i=1

(yi − (β̂0 + β̂1x1i + . . .+ β̂dxdi))
2 + 2d

AIC adds a penalty for number of parameters d used in the model.

Bayesian Information Criterion (BIC). BIC chooses the model with the lowest

value of

AIC =

d
∑

i=1

(yi − (β̂0 + β̂1x1i + . . . + β̂dxdi))
2 + d log(n)

Like AIC, BIC adds a penalty for number of parameters d used in the model, but

it scales the penalty by log of the size of the dataset.
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