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Knowledge Discovery in Data:
Naı̈ve Bayes

Overview

Näıve Bayesmethodology refers to aprobabilistic approachto information dis-
covery in data. The idea behind theNäıve Bayestechnique is applicable to the
following problems studied in this course:

1. Classification/Supervised Learning.

2. Information Retrieval.

3. Collaborative Filtering/Recommender System.

Naı̈ve Bayesian Classification

Recall the nature of theclassification problem:

Classification Problem. Given a (training) datasetD = (A1, . . . , An, C), con-
struct aclassification/prediction function that correctly predicts the class labelC

for every record inD.

One way of predicting theclass labelc(d) for a recordd ∈ D is toestimate the
probabilities Pr(c(d) = c1), P r(c(d) = c2), . . . , P r(c(d) = ck), andpick as the
prediction the class with the highest probability.

Note: In general, wedo not need to knowthe exact probabilities, itsuffices to
know their order (ranks) .

Näıve Bayesis a method of estimating the probabilities (ranks) of a record be-
longing to each class.
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Classifiers and Observations. Imagine that a classifier you are building is a
black box with an input, which can observe a record from a datasetD, and an
output, on whichyou can observethe class labelc ∈ dom(C)1

Notation. Näıve Bayesmethod encodesPr(c(d) = ci) as the conditional prob-
ability of observingci in the output whend is observed in the input:

Pr(d = ci) = Pr(ci|d).

d = (a1, . . . , an). Therefore,

Pr(ci|d) = Pr(ci|A1 = a1, A2 = a2, . . . , An = an).

By definition ofconditional probability :

Pr(X|Y ) =
Pr(X ∧ Y )

Pr(Y )
.

Bayes Theoremfor conditional probabilities:

Pr(X|Y ) · Pr(Y ) = Pr(Y |X) · Pr(X).

WhenPr(Y ) 6= 0 andPr(X) 6= 0, Bayes Theorem can be rewritten as:

Pr(X|Y ) =
Pr(Y |X) · Pr(X)

Pr(Y )
.

Näıve Bayes Step 1: The Bayes Part (Applying Bayes Theorem):According
to Bayes Theorem, the conditional probabilityPr(ci|d) of observing an object of
categoryci given values in vectord can be represented as:

Pr(ci|d) =
Pr(d|ci) · Pr(ci)

Pr(d)
,

or

Pr(ci|d) = Pr(ci|A1 = a1, . . . An = an) =
Pr(A1 = a1, . . . , An = an|ci) · Pr(ci)

Pr(A1 = a1, . . . An = an)
.

Here,

• P (d|ci) = Pr(A1 = a1, . . . , An = an|ci) is the probability of observing
vector d given that the classifier recognized the vector as belonging
to class ci. (i.e., the probability of observingd among all vectors of class
ci).

• P (ci) is the probability of observing a vector that belongs to class ci

(textsfprior probability of classci).

1See the Classification/Supervised Learning lecture notes for the notation.
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• P (d) is the probability of observing vector d in the input. (prior proba-
bility of vector d).

What’s the point? We have just reduced the problem of estimatingPr(ci|d) to
the problem of estimatingP (d|ci) (as well asPr(ci) andPr(d)).

Näıve Bayes Step 2: Simplification. We need to estimate three probabilities:
Pr(d|ci), P r(ci) andPr(d). We observe the following:

1. Estimating Pr(ci). The probability of observing a vector from classci can
be estimated asthe fraction of the training set D that belongs to this
class.

In other words, letDi = {d ∈ D|c(d) = ci}. Then,

Pr(ci) =
|Di|

|D|
.

2. Dealing with Pr(d). Vector d, when it occurs in the training set can be
associated with one ofk classes. This means that we can representPr(d) as
the sum of conditional probabilities of observingd given that a specific class
c1, . . . , ck has been observed:

Pr(d) = Pr(d|c1) ·Pr(c1)+ . . . P r(d|ck) ·Pr(ck) =
k

∑

i=1

Pr(d|ci) ·Pr(ci).

We observe thatPr(d) remains constant amongPr(c1|d), . . . ,Pr(ck|d):

Pr(c1|d) =
Pr(d|c1) · Pr(c1)

Pr(d)
; Pr(c2|d) =

Pr(d|c2) · Pr(c2)

Pr(d)
; . . . ; Pr(ck|d) =

Pr(d|ck) · Pr(ck)

Pr(d)
.

Therefore,if we are interested solely in ranking the probability estimates,
we can ignorePr(d) and concentrate on estimating

Pr(d|ci) · Pr(ci).

Näıve Bayes: Step 3: the Näıve Part (estimating conditional probability): We
now need to estimate

Pr(d|ci) = Pr(A1 = a1, . . . , An = an|ci).

The näıve part of the method comes from theconditional independence as-
sumption.
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Conditional Independence Assumption. Two random variablesX andY are
said to beconditionally independentiff for all x ∈ dom(X), y ∈ dom(Y ),

Pr(X = x|Y = y) = Pr(X = x),

i.e., if the probability of observing any value of X is not affected by having
had observed a specific value of Y .

The corrolary to the conditional independence property is that the joint prob-
ability of two random variables is equal to the product of their marginal
probabilities:

Pr(X = x ∧ Y = y) = Pr(X = x) · Pr(Y = y).

Estimating Pr(d|ci) using conditional independence assumption. We apply
conditional independence assumptionto

Pr(d|ci) = Pr(A1 = a1, . . . , An = an|ci).

That is, we assume that each attribute variableAi is conditionally independent
of A1, . . . , Ai−1, Ai+1, . . . , An givenC, the class variable:

Pr(Ai = ai|A1 = a1, . . . Ai−1 = ai−1, Ai+1 = ai+1, . . . , An, C = cj) = Pr(Ai = ai|C = cj).

Therefore:

Pr(A1 = a1, . . . , An = an|ci) = Pr(A1 = a1|ci)·. . .·Pr(An = an|ci) =
n

∏

j=1

Pr(Aj = aj |ci).

P r(Aj = aj |ci) is theprobability of observing a record with Aj = aj in
class ci.

What’s the point? We have now reduced the problem of estimating the condi-
tional probabilityPr(ci|d) to the problem of estimating the family of probabilities
Pr(Aj = aj |ci).

Nav̈e Bayes Step 4: Estimating Probabilities. We estimatePr(Aj = aj|ci) as
follows.

Let Di = {d ∈ D|c(d) = ci} be the set of all records of classci. Let Dij =
{d ∈ Di|d.Aj = aj} be the set of all records of classci with aj as the value of the
attributeAj . Then, our estimate forPr(Aj = aj |ci) is

Pr(Aj = aj|ci) =
|Dij |

|Di|
,

i.e., the percentage of records in classci that haveaj as the value ofAj.

Näıve Bayes Step 5: Predict the class . Compute estimates

Pr(d|c1) · Pr(c1), . . . , P r(d|ck) · Pr(ck),

using Steps 1–4 from above.

Predict:
c(d) = arg max

i=1,...,k
(Pr(d|ci) · Pr(ci)).
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Combining it all together

Näıve Bayes for classification:

1. Use Bayes Theorem.

Pr(ci|d) = Pr(ci|A1 = a1, . . . An = an) =
Pr(A1 = a1, . . . , An = an|ci) · Pr(ci)

Pr(A1 = a1, . . . An = an)
.

2. Simplify.

Pr(ci|A1 = a1, . . . An = an) ∼ Pr(A1 = a1, . . . , An = an|ci) · Pr(ci).

3. Apply Independence Assumption.

Pr(ci|A1 = a1, . . . An = an) ∼ Pr(A1 = a1|ci) · . . . ·Pr(An = an|ci) ·Pr(ci) = Pr(ci) ·

n
∏

j=1

Pr(Aj = aj |ci).

4. Estimate Probabilities.

Pr(ci) =
|Di|

|D|
.

P r(Aj = aj |ci) =
|Dij |

|Di|
.

P r(ci|A1 = a1, . . . An = an) ∼
|Di|

|D|
·

n
∏

j=1

|Dij |

|Di|
=

|Di1| · . . . · |Din|

|D| · |Di|n−1
.

5. Predict.

c(d) = arg max
i=1,...,k

(Pr(d|ci) · Pr(ci)) = arg max
i=1,...,k

|Di1| · . . . · |Din|

|D| · |Di|n−1
.

Naı̈ve Bayes for Information Retrieval

The Naïıve Bayesmodel for Information Retrieval is commonly referred to as
Probabilistic IR , Binary Independence RetrievalorStatistical Language Model.

IR Problem. Recall that the main question IR studies is formulated as follows:

Given a document collection D and a query q find all documents
in D that are relevant to q.

IR and Classification. The IR problem can be viewed as a classification problem
of the following form:

Given information about a user query q and some document
d ∈ D, classify d as either relevant to q or not relevant to q.

Note: In actuality, this is apartially supervised learning problem: weknow
the classes but wedo not have(at the outset) a training set.
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IR and probabilities. We can transform the problem of classifying a document
d asrelevant or not relevant into a problem of estimating the probabilities

Pr(R|d, q) andPr(N |d, q) (Pr(N |d, q) = 1 − Pr(R|d, q)) .

Here,

Pr(R|d, q) is the probability of classifying document d as relevant for query q.
Pr(N |d, q) is the probability of classifying document d as not relevant for query q.

Step 0: Choose IR model. In lieu of actual documentd and queryq, we use
theirbinary vector representations: d = (w1, . . . , wN ), q = (q1, . . . , qN ), where
di = 1 (qi = 1) if term ti is in d (q) and is 0 otherwise.

Step 1: Apply the Bayes Theorem.

Pr(R|d, q) =
Pr(d|R, q) · Pr(R|q)

Pr(d|q)
.

P r(N |d, q) =
Pr(d|N, q) · Pr(N |q)

Pr(d|q)
.

Here,

• Pr(d|R, q) is the probability of a relevant to q document being d (the
probability of observingd given that a relevant document was returned in
response to queryq);

• Pr(R|q) is the probability of retrieving a relevant document given query
q;

• Pr(d|q) is the probability of retrieving d in response to q;

• Pr(d|N, q) is the probability of a not relevant to q document being
d (the probability of observingd given that a non-relevant document was
returned, and in response to queryq);

• Pr(N |q) is the probability of retrieving a not relevant document given
query q.

Note, that we assumeP (d|q) 6= 0.

Step 2. Switch to Odds Ratio. Näıve Bayesmethod for classification switches
from estimating original conditional probability to estimating just the numerator of
the fraction.

In the case of IR, we only have two classes, so we can switch to estimating the
odds ratio of d being relevant vs. not relevant given queryq to achieve the same
basic effect of not needing to estimate Pr(d|q):

O(R|d, q) =
Pr(R|d, q)

Pr(N |d, q)
=

Pr(d|R,q)·Pr(R|q)
Pr(d|q)

Pr(d|N,q)·Pr(N |q)
Pr(d|q)

=
Pr(d|R, q) · Pr(R|q)

Pr(d|N, q) · Pr(N |q)
.
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Step 3. Simplify the Odds Ratio. Note, that

Pr(R|q)

Pr(N |q)
,

the odds ratio of retrieving a relevant vs. not relevant document given query
q does not depend on documentd, and therefore is aconstant for each queryq.

Thus, we reduce our task to estimating the ratio

Pr(d|R, q)

Pr(d|N, q)
∼ O(R|d, q).

Step 4. The Näıve Assumption. We assumeconditional independenceof terms
in d givenq. This allows us to use the following substitutions:

Pr(d|R, q) = Pr(d[1] = w1, . . . , d[N ] = wN |R, q) =
N
∏

i=1

Pr(d[i] = wi|R, q).

P r(d|N, q) = Pr(d[1] = w1, . . . , d[N ] = wN |N, q) =
N
∏

i=1

Pr(d[i] = wi|N, q).

Therefore, we obtain,

Pr(d|R, q)

Pr(d|N, q)
=

N
∏

i=1

Pr(d[i] = wi|R, q)

Pr(d[i] = wi|N, q)
,

or

O(R|d, q) = O(R|q) ·
N
∏

i=1

Pr(d[i] = wi|R, q)

Pr(d[i] = wi|N, q)
.

Step 5. Separate probabilities by term occurrence/absense. We note thewi in
the equation above can take only two values:1 (term t1 is in the document) and0
(termti is not in the document). We can, then rewrite the last formulaas follows:

O(R|d, q) = O(R|q) ·
∏

i:wi=1

Pr(d[i] = 1|R, q)

Pr(d[i] = 1|N, q)
·

N
∏

i:wi=0

Pr(d[i] = 0|R, q)

Pr(d[i] = 0|N, q)
.

Step 6. Perform Information Retrieval (term matching). Consider the follow-
ing notation:

Denote aspi the probability, Pr(d[i] = 1|R, q), of a document, relevant to q

containing term ti.

Denote asui the probability, Pr(d[i] = 1|R, q), of a document, not relevant to
q containing term ti.

Assuming this notation, we can construct the following probability matrix:
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Document: Relevant to q (R) Not relevant to q (N)
Term present:wi = 1 pi ui

Term absent:wi = 0 1 − pi 1 − ui

We can rewrite our estimate of the odds ratio in the new terms as follows:

O(R|d, q) = O(R|q) ·
∏

i:wi=1

pi

ui

·
∏

i:wi=0

1 − pi

1 − ui

.

(this, just changes the notation, nothing else.)

Now, make the followingsimplifying assumption:

If term ti is not present in query q, i.e., if qi = 0, then assume

pi = ui.

(Terms not in query have equal chance of appearing in relevant and
non relevant documents).

Using this assumption, we can filter out some of thepi

ui

and 1−pi

1−ui

terms from the
odds ratio formula:

O(R|d, q) = O(R|q) ·
∏

i:qi=wi=1

pi

ui

·
∏

i:qi=1,wi=0

1 − pi

1 − ui

.

We can rewrite this formula as:

O(R|d, q) = O(R|q) ·
∏

i:qi=wi=1

pi(1 − ui)

ui(1 − pi)
·

∏

i:qi=1

1 − pi

1 − ui

.

Note, that in such form, the expression

∏

i:qi=1

1 − pi

1 − ui

is a constant given a query (it does not depend on the document). So,

O(R|d, q) = Kq ·
∏

i:qi=wi=1

pi(1 − ui)

ui(1 − pi)
,

whereKq = O(R|q) ·
∏

i:qi=1
1−pi

1−ui

is constant forq.

Step 7. Switch to Retrieval Status Value. Our goal is to estimate

∏

i:qi=wi=1

pi(1 − ui)

ui(1 − pi)
.

We can, instead, estimate theretrieval status valueof documentd w.r.t. query
q, denoted asRSVd and defined as follows:

RSVd = log





∏

i:qi=wi=1

pi(1 − ui)

ui(1 − pi)



 =
∑

i:qi=wi=1

log
pi(1 − ui)

ui(1 − pi)
.
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Note: By switching to logarithms, we preserve monotonicityof our estimates
(O(R|d, q) > O(R|d′, q) iff RSVd > RSVd′). However, we replace theproduct
with thesum.

We defineci to be thelog odds ratios for the term ti in the query q:

ci = log
pi(1 − ui)

ui(1 − pi)
= log

pi

1 − pi

+ log 1 − uiui.

Similarity computation. We compute the similarity between a document and a
query as itsRetrieval Status Value:

sim(d, q) = RSVd =
∑

i:qi=wi=1

ci.

Step 8. Parameter Estimates We need a way of estimatingcis or theirpi andui

components.

Theory. Suppose we are able to observe the setDq of all documentrelevant to
query q. Let |Dq| = S. Additionally, let Dqi = {d ∈ Dq|d[i] = 1} and let
|Dqi| = s (i.e.,s out ofS relevant documents contain termti).

Then, we can estimatepi andui as follows:

pi =
s

S − s

ui =
dfi − s

|D| − dfi − s + S

ci = log
s · (|D| − dfi − s + S)

(dfi − s) · (S − s)
.

Smoothing. We cansmoothetheci estimate to avoid zeroes:

ci = log
(s + 0.5) · (|D| − dfi − s + S + 0.5)

(dfi − s + 0.5) · (S − s + 0.5)
.

Practice. In practice, theanswer set(i.e., the list of relevant documents) is rarely
available (especially, since queries are dynamic).

The estimates arekludged in the following manner:

log
1 − ui

ui

= log
|D| − dfi

dfi

≈ log |D|dfi = idfi.

This assumes that the number of relevant documents ismuch smaller than the
total size of the collection (and thus,|D| − dfi is almost|D|.)

Estimating pi. Estimatingpis isharder. In practive the estimates arekludged
in the following manner:
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• Setpi = c for some valuec ∈ (0, 1). Typical estimate of this sort ispi = 0.5.

• Tie pi to dfi:

pi =
1

3
+

2

3
·
dfi

N
.
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