bal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.

Data Mining:
Classification/Supervised Learning

Definitions

Data. Consider a setl = {A;,...,A,} of attributes, and an additionahte-
gorical attributeC', which we call aclass attribute or category attribute.

dom(C) = {ci1,...,cr}. We call each value; aclass labelor acategory label.
Thelearning datasetis a relational tableD.

Two formats:

1. Training (data)set. D has scheméA,, ..., A4,,C),i.e.,
for each element of the dataset we are given its class label.
2. Test (data)set D has schem@A;, ..., A,), i.e.,

the class labels of the records in are not known.

Classification Problem. Given a (training) dataseb, construct aclassifica-
tion/prediction function that correctly predicts the class label for every record
in D.

Classification function= prediction function = classification modek= classifier.

Supervised learningbecause training set contains class labels. Thus we can com-
pare (supervise) predictions of our classifier.

Classification Methodology

Naive Bayes.Estimation of probability that a record belongs to eachslas

Neural Netowoks. Graphical models that construct a "separation functiorseioa
on the training set data.

Support Vector Machines (SVMs).Linear models for two-class classifiers.
Association Rules.Infer association rules with class label on the right side.
Decision Trees.Build a tree-like classifier.key advantage:human-readable!)

Decision Trees

Decision tree-based classifiers aggmple andefficient.

Decision trees. Let A = {A4,,..., A} are the dataset attributes afids a class
label. Letdom(C) = {ci,...,cx}. A decision treeover A andC'is a treel’ =
(V, E) such that,

1. Eachnon-leafnodev € V is labeled with somel; € A.
2. Eachleaf nodev; € V is labeled with somelass labelc; € dom/(C).

3. Each edge? = (v,v’), wherelabel(v) = A; is labeled with some value
a € dom(4A;).

4. No attributeA; € A can appear more thanceon each path from root to
leaf.

A decision treecan be used as a classifier as follows:

e Consider arecord= (aj,as,...,a,).

e Start at the root node of the decision tre€". Letlabel(r) = A;. Find the
edgee = (r,v), such thatabel(e) = t(A;) = a4, i.e.,follow the outgoing
edge fromr that is labeled with the value of; in ¢.

e For nodew visited next, continue the same process: follow the outyenige
labeled with the value of thibel(v) attribute found irt.

e When you reach leaf nodethe labelabel(l) will be theclass(t).

C4.5 Algorithm: Induction of Decision Trees

Te C4.5. Algorithm for decision tree induction was originally proposed by Quin
lan in [1].

Input/Ouput The C4.5algorithm for decision tree induction has three parame-
ters:

Name 1/O Explanation

D input the training dataset

A input the list of attributes

T ouput the constructed decision tree

Algorithm idea. The C4.5 Algorithm is a recursive decision tree induction al-
gorithm. The algorithm has the following three main steps:

1. Termination conditions. The algorithm has two termination conditions:

(a) D contains records with the same class labdh this case, the algo-
rithm creates a tree that consists of a single node, andnastagt the
class labet.

(b) A = (: there are no more attributes left to consider. In this ctse,
algorithms creates a tree that consists of a single nodeassigns to
it the label of the plurality records ib.

2. Selection of the splitting attribute. The algorithm chooses the attribute
to be used to split the dataset.

3. Tree construction. The algorithm does the following:

(a) Creates a tree noddabeledA;.

(b) Splits the dataseb into dom(A;) subsetsDy, ... Dgom(a,), and re-
cursively calls itself for each subsé;, with the reduced list of at-
tributesA — {4;}.

(c) Createsdom(A;)| edges from to the roots for tree®y, . . ., Tjgom(a,)|
returned by the recursive calls. Labels each edge with theoppate
value fromdom/(A;).

(d) Returns the constructed tree.

The pseudocode for tHé4. Algorithm is shown in Figure 1.

Selection of the Splitting Attribute

The C4.5. Algorithm relies on an external function to identify the splitting at-
tribute on each step. In this section we discuss how to firttisgl attributes.

Information Enthropy. Consider a relational dataséx over a list of attributes
A = {As,...,A4,,C}, whereC is the class attribute oD. Let dom(C) =
{c1,...¢c;}. LetD; = {t € D|class(D) = ¢;}. Thus,D = D; U Dy U ... U Dq.
As Pr(C = ¢;) we denote the probability that a randomly chosen re¢osd D
will have the class label af;. We can see that

_ | Dl
|D|

Pr(C =¢)
Theenthropy of the dataseD w.r.t. C'is defined as follows:

k
enthropy(D) = — Z Pr(C = ¢;) -logy(Pr(C = ¢)).
1=1

Enthropyis measured itbits.

(Note: In this computation, we assume tlatlog,(0) = 0.)

3

Algorithm C45(D, A, T, threshold);
begin /1 Step 1: check term nation conditions
ifforall d € D: class(d) = ¢; then
create leaf noder;
label(r) := ¢;
T :=r
elseif A =0 then
¢ := find_most_frequent_label(D);
create leaf noder;
label(r) = ¢;
else //Step 2: select splitting attribute
Ay = selectSplittingAttribute(A, D, threshold);
if Ag=NULL then //no attribute is good for a split
create leaf noder;
label(r) := find_most_frequent_abel(D);
T :=r,
else // Step 3: Tree Construction
create tree noder;
label(r) := Ayg;
foreach v € dom(Ay) do
D, := {t € D|t[Aq] = v};
if D, # (0 then
C45D,, A — {A,},T); /lrecursive call
append T, to r with an edge labeled,;
endif
endfor
endif
endif
end

Figure 1: C4.5 algorithm for decision tree induction.

function selectSplittingAttribute(A, D threshold); //uses informati on gain
begin
p0 := enthropy(D);
for each A; € Ado
p[Ai] := enthropya, (D);
Gain[A;] = p0 — p[A;]; [/ conpute info gain
endfor
best := arg(findMaz(Gainl)));
if Gainlbest] >threshold then return best
else return NULL;
end

function selectSplittingAttribute(A, D threshold); //uses information gain ratio
begin
p0 := enthropy(D);
foreach A; € Ado
p[Ai] := enthropya, (D);
Gain[A;] :== p0 — p[A;]; //compute info gain
gainRatio[A;] := Gain[A;]/enthropy(A;); [/ conpute info gain ratio
endfor
best := arg(findMaz(gainRatiol]));
if Gainlbest] >threshold then return best
else return NULL;
end

Figure 2: selectSplittingAttribute() functions using infomration gain and infor-
mation gain ratio measures.

Properties of enthropy. The enthropy of e&nomogenousiataset in which each
class label has the same probability of occuringpgs, &, i.e., the number of bits
necessary to represeit

M1 1 1) <1
enthropy(D Z z log, < > = —logy (E) Z 7= log, k

=1
The enthropy of a dataset where only one class label oktigpresent is 0.

k—1
enthropy(D) = — Z 0-logy0—1-logy1=0.
i=1

Enthropy measures the impurity of data. The higher theenthropy the more
impurethe data is.

Information Gain. Idea: we want to select the attribute that splits the datBset
into most pure subsets. We introdudaformation gain measure. Given a dataset
D over the listA = {A;,... A} of attributes, theenthropy ofD after being split

using attributeA; with domaindom(A4;) = {v1,...,vs} is defined as:
enthropya, (D Z |\D]|‘ enthropy(Dj),

WhereDj = {t S D‘t[AZ] = Uj}.

The information gain achieved by the split is the difference between the en-
thropy of D before and after the split:

Gain(D, A;) = enthropy(D) — enthropya, (D).

Information Gain Ratio. Information Gain Ratio is the normalized version of
the information gain measure:

Gain(D, A;)
S ‘D ‘ |D|
=3 (3 loss ')

(essentially, we normalizeformation gain by the "enthropy” of the split itself.)

gainRatio(D, A;) =

Using Information Gain and Information Gain Ratio to select splitting at-
tributes

Figure 2 shows the two versions of teelectSplittingAttribute() function. The
first version uses thiaformation gain measure to determine the splitting attribute,
while the second version uses thérmation gain ratio .

Both algorithms do the following:

1. Compute the enthropy of the current dataset.

2. Compute the enthropy after splitting the dataset usioh e&the available
attributes.

3. Find the attribute with the bestformation gain/information gain ratio .

4. If theinformation gain/information gain ratio exceed thehreshold, the
attribute is returned. OtherwisBlLL is returned, as no attribute leads to a
significant improvement in the enthropy.

Classifier Evaluation

Accuracy Measures

Notation. LetT be a classifier constructed lapy supervised learning algorithm
given atraining set D.

Let D’ be atest set drawn from the same data/distribution as D.
Lett € D'. AsT(t) we denote thelass labelsupplied fort by the classifiefl".
As class(t) we denote thactual class label of.

As Dy, we denote theet of all test cases for which our classifier provides cdrrec
prediction
Dypye = {t € D'|T(t) = class(t)}

As D.,...» we denote theset of all test cases for which our classifier provides
incorrect prediction

Derror = {t € D'|T(t) # class(t)}
Accuracy. Theaccuracyof the classifiefl is:

D
accuracy(T) = | ‘]g:r‘

Error rate. Theerror rate of the classifiefl is:

|Derr0r‘
|D|

errorRate(T) = 1 — accuracy(T) =

Accuracy Measures for Binary Classification

Binary Classifiers. Many classifiers ardinary: i.e., the class variablé' has
only two values. A classifiaction problem witlom (C) = {c1,... ¢}, k > 2 can
be transformed inté& classification problems with class variablés, Cs, ..., Cy,
such thatdom(C;) = {0,1}. C; = 1 meansC' = ¢;.

Classification Errors. Consider a binary classification problem with the class
variableC, dom(C') = {0,1}, whereC' = 1 is interpreted asrecord belongs to
classC” andC = 0 is interpreted a&%ecord does not belong to class.

Let T be a classifier fo€C. Let D’ be a test dataset. Giveéne D, we can observe
four possibilities:

1. True Positive: T'(t) = class(t) = 1,
2. True Negative: T'(t) = class(t) = 0;
3. False Positive:T'(t) = 1; class(t) = 0;
4. False Negative:T'(t) = 0; class(t) = 1;

There ardwo types of errors of classification

1. Type | error: a.k.a. error of commission a.k.a. false positive classifier
incorrectly classifies a tuple as belonging to class

2. Type Il error: a.k.a. error of omission a.k.a. false negative classifier
incorrectly classifies a tuple as NOT belongingto cléss

Notation. Conisder the following notation:

1. Dyp : set of alltrue positivesin D'; TP = |Dppl;
2. Dry : set of alltrue negativesin D'; TN = |Dry/;

3. Dpp : set of allfalse positivesin D’; FP = |Dpp

4. Dpy : set of allfalse negativesn D’; FN = |Dpy

Confusion Matrix. The information about the accuracy obmary classifier is
usually arranged in a form aonfusion matrix:
| Classified Positive | Classified Negative |

Actual positive TP FN
Actual negative FpP TN

Precision. Precisionof the classifier is the percentage of the correptgitively
classified records in the set of all positively classifiedrds:

TP

precision(T) = TP P

Precision measurdsow accurately the classifier selects positive examptes
reaches 100% when the classiféeimits no false positives

Recall. Recallof the classifier is the percentage of all corregtbsitivelyclassi-
fied records in the set of all actual positive records:

TP

T@Call(T) = m

Recall measurelsow successful the classifier is in correctly identifyingpalsi-
tive records.It reaches 100% when the classifa@mits no false negatives.

7

Note: Precisionandrecall make sensenly when combined together.

Itis easy to build a classifier with 100% precisidr{t) = O for all t € D’ guarantees
that. But this classifier will have recall of Q. It is easy to build a classifier with
100% recall:T(t) = 1 for all t € D’ guarantees thaBut this classifier will have
small precision.

PF. ThePF measure is defined as:

FP

PE(T) = FP+TN’

PF measures thmisclassification ratethe percentage of recordst in classC
that wasincorrectly classified

F-measure. TheF-measureis the harmonic mean of precision and recall:

2 _ 2-precision(T) - recall(T)

F(T): 1

recision(™) T Teca%l(T) ~ precicion(T) + recall(T)

F-measure combines precision and recall into a single number by baignc
them against each other.

In some situations, one of the two measures (precision aflyés more impor-
tant than the otherF-measurecan be skewed to favor each. Thg-measure
below assumes recall is twice as valuable as precision. Fjemeasurebelow
assumes precision is twice as valuable as recall.

Fy(T) = 5 - precision(T) - recall(T)
2T Asoprecision(T) + recall(T)

125 - precision(T') - recall(T)
"~ 0.25 % precision(T) + recall(T)"

Fos5(T)

The formula forFj, where represents the relative importance of recall over
precision is:

(14 3?) - precision(T) - recall(T)

F3(T) =
5(T) (32 x precision(T) + recall(T)

Evaluation Techniques

In a typical situation, you are giventeaining set D, and are asked to produce a
classifier for it.

If all records from D are used to create a classifier, there will be no way to
INDEPENDENTLY test its accuracy.

Holdout set. Divide D into two sets:D = Dy, qin U Diest: Dirain 0 Diest = 0.
Dy« is called thenoldout set.

Create a classifiel’ using Dy,..;,, as the training seflestT" using D;;.
Holodout setselection:

e Random sampling. Select a fractione. Randomly sample:% of records
from D, put them inDy.;.

Commonly, you use around 90% o&f as the training set, reserving the re-
maining10% for the holdout set.

e Time slices. If D consists of "old” data and "new” data, then, the training
set can include all of the "old” data, while the holdout seh @aclude the
"new” data. (e.g., in situations where new records appearysiay).

Multiple random sampling. This technique is used whdn is small.

e Select some numbé¥l of repetitions.

e PerformM random samplings of holdout setfrom D. Run classifier con-
struction on the remaining sél,..;,. Compute theaccuracy of the classi-
fier for the current sample.

e Compute the finahccuracy as the meaaccuracy over all samples.

Multiple random sampling allows us to avoidlukes(or, at least, to downgrade
their effects).

Cross-Validation. This is a variant ofmultiple random sampling that uses only
one random assignment of records, but performs multipkesifieations.

e Selectn — the number oslicesof data inD.
e Usingrandom samplingplit D into n slicesof equal (or almost equal) size.

e Peformn classification procedures. On stgpuse sliceD; as theholdout
set while using all othern — 1 slices as théraining set.

Note: Standard cross-validations used in practiceléxdold, 5-fold andleave-
one-outcross-validations.

References

[1] J.R. Quinlan.C4.5: Program for Machine LearningMorgan Kaufman,
1992.

