
. .
Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:
Classification/Supervised Learning

Potpourri

Contents

1. C4.5. and continuous attributes: incorporating continuous attributes intoC4.5 Algorithm.
2. C4.5. and overfit: dealing with overfit in decision trees
3. kNN: k Nearest Neighbors learning: a lazy evaluation learning algorithm.
4. Bagging and Boosting: ensembles of classifiers to the rescue!

1 Handling of Continuous Attributes in C4.5. Algorithm

Notation. Let D be a dataset over the list of attributesA = {A1, . . . , An}. Let
Ai ∈ A be acontinuous attribute.

A binary split of D on attributeAi at valueα is a pairD− ⊆ D, D+ ⊆ D, such
that:

1. D− ∪ D+ = D

2. D− ∩ D+ = ∅

3. (∀d ∈ D−)d[Ai] ≤ α;

4. (∀d ∈ D+)d[Ai] > α;

Idea. On each step ofC4.5 Algorithm, for each continuous attributeAi find a
binary split with the bestinformation gain (or information gain ratio). More
specifically, the enthropy of a binary split ofD onAi usingα is

enthropyAi,α(D) = −
|D−|

|D|
· enthropy(D−) −

|D+|

|D|
· enthropy(D+).

1

function selectSplittingAttribute(A,D,threshold); //uses information gain
begin

p0 := enthropy(D);
for each Ai ∈ A do

if Ai is continuousthen
x := findBestSplit(Ai, D);
p[Ai] := enthropyAi,x(D);

else
p[Ai] := enthropyAi

(D);
endif
Gain[Ai] = p0 − p[Ai]; //compute info gain

endfor
best := arg(findMax(Gain[]));
if Gain[best] >threshold then return best

else return NULL;
end

function findBestSplit(Ai, D) //finds best binary split for a continuous attribute
begin

initialize associative arrayscounts1[], . . . , countsk[];
initialize associative arrayGain;
p0 := enthropy(D);
foreachd ∈ D do //Step 1: scan data

for j = 1 to k do
if class(d) == cj then

countsj [d[Ai]] := countsj [d[Ai]] + 1;
else

countsj [d[Ai]] := countsj [d[Ai]] + 0; // instantiates counts j[d[A i]]
endif

endfor
endfor
foreachx: index of instance ofcountsi do

//computes enthropy of binary split at x
Gain[x] := p0 − enthropy(D,Ai, x, countsi, . . . , countsk);

endfor
best := arg(findMax(Gain[]));
return best;

end

Figure 1: A modified version ofselectSplittingAttribute() function for theC4.5
Algorithm . This version finds the best binary split for any continuous attribute.

2

The information gain obtained by usingAi with the binary split atα is:

GainAi,α(D) = enthropy(D) − enthropyAi,α(D).

Finding best binary split. The new version of theselectSplittingAttribute()
function is in Figure 1.

• When attributeAi is continuous, newselectSplittingAttribute() callsfind-
BestSplit() function, also shown in Figure 1.

• To find the best binary split, we

– scan the datasetD and determine the list of all values ofAi.

Note, that whiledom(Ai) is continuous,D contains finitly many dis-
tinct values ofAi!

– For each valuex in of Ai from D find enthropyAi,x(D).

– Findx with the largestinformation gain and return it.

Other adjustments to C4.5. One more adjustment toC4.5needs to be made.

• if a categorical attribute is selected to splitD on the current step of the
algorithm, this attribute isremoved from the attribute list passed in the
recursive calls toC4.5. (same as before)

• if a continuous attribute is selected to splitD on the current step of the
algorithm, this attribute iskept in the attribute list passed in the recursive
calls toC4.5. (new)

C4.5. and Overfitting

Overfitting. LetDtraining be a training set for a classification problem, andDtest

be a test set. Letf be a classifier trained onDtraining.

f overfits the data, if there exists another classifierf ′ which has
lower accuracy thanf on Dtraining but higher accuracy thanf on
Dtest.

Casuses of overfitting:

• Noise in data.(e.g., wrong class labels)

• Randomness phenomena.(training set is not representative of the application
domain)

• Complexity of model.(too many attributes, some may not be needed for
classification)

3

Dealing with overfitting. Two main approaches:

• Pre-pruning or stopping early. E.g., thethird termination condition in
Algorithm C4.5 terminates tree construction early using the user-specified
threshold parameter.

• Post-pruning or pruning a constructed tree. In this approach, the clas-
sification algorithm is allowed topossibly overfitthe data, but a separate
pruning algorithm will then check the classifier for overfitting.

k-Nearest Neighbors Classification (kNN)

C4.5. andmany other classification techniques(Neural Nets, SVNs, Rule Induc-
tion) areeager: these techniques analyze the training set and construct a classifier
before any test data is read.

The principle oflazy evaluation is to postpone any data analysis until an actual
question has been asked.

In case of supervised learning,lazy evaluationmeansnot building a classifier in
advance of reading data from the test data set.

k-Nearest Neighbors Classification algorithm (kNN). kNN is a simple, but
surprisingly robustlazy evaluationalgorithm. The idea behindkNN is as follows:

• The input of the algorithm is a training setDtraining, an instanced that needs
to be classified and an integerk > 1.

• The algorithm computes thedistancebetweend and every itemd′ ∈ D.

• The algorithm selectsk most similar orclosesttod records fromD: d1, . . . , dk,
di ∈ D.

• The algorithm assigns tod the class of the plurality of items from the list
d1, . . . , dk.

Distance/similarity measures. The distance (or similarity) between two records
can be measured in a number of different ways.

Note: Similarity measures increase as the similarity between two objects in-
creases.Distance measuresdecrease as the similarity between two objects in-
creases.

1. Eucledian distance. If D has continuous attributes, eachd ∈ D is essen-
tially a point inN -dimensional space (or anN -dimensional vector).Eucle-
dian distance:

d(d1, d2) =

√

√

√

√

n
∑

i=1

(d1[Ai] − d2[Ai])2,

works well in this case.

4

2. Manhattan distance. If D has ordinal, but not necessarily continuous at-
tributes,Manhattan distance may work a bit better:

d(d1, d2) =
n

∑

i

|d1[Ai] − d2[Ai]|.

3. Cosine similarity. Cosine distance between two vectors is the cosince of the
angle between them.Cosine similarity ignores the amplitude of the vectors,
and measures only the difference in theirdirection:

sim(d1, d2) = cos(d1, d2) =
d1 · d2

||d1|| · ||d2||
=

∑n
i=1 d1[Ai] · d2[Ai]

√

∑n
i=1 d1[Ai]2 ·

√

∑n
i=1 d2[Ai]2

.

If d1 andd2 arecolinear (have the same direction),sim(d1, d2) = 1. If d1

andd2 areorthogonal, sim(d1, d2) = 0.

Ensemble Learning

Bagging

Bagging= Bootstrapaggregating.

Bootstrapping is a statistical technique that one to gather many alternative ver-
sions of the single statistic that would ordinarily be calculated from one sample.

Typical bootstrapping scenario. (case resampling) Given a sampleD of size
n, a bootstrap sampleof D is a sample ofn data items drawnrandomly with
replacementfrom D.

Note: On average, about 63.2% of items fromD will be found in a bootstrapping
sample, but some items will be found multiple times.

Bootstrap Aggregating for Supervised Learning. LetD be a training set,|D| =
N . We construct abagging classifierfor D as follows:

Training Stage: GivenD, k and a learning algorithmBaseLearner:

1. Createk bootstrapping replications D1, . . . ,Dk of D by using case
resampling bootstrapping technique.

2. For eachbootstrapping replication Di, create a classifierfi using the
BaseLearner classification method.

Testing Stage: Givenf1, . . . , fk and a test recordd:

1. Computef1(d), . . . fk(d).

2. Assign asclass(d), the majority (plurality) class amongf1(d), . . . , fk(d).

Boosting

Boosting. Boostingis a collection of techniques that generate an ensemble of
classifiers in a way that each new classifier tries to correct classification errors
from the previous stage.

5

Algorithm AdaBoost(D, BaseLearner, k) begin
foreachdi ∈ D do D1(i) = 1

|D|
;

for t = 1 to k do //main loop
ft :=BaseLearner(Dt);
et :=

∑

class(di) 6=ft(di)
Dt(i);

// f t is constructed to minimize e t
if et > 0.5 then // large error: redo

t := t − 1;
break;

endif
at := 1

2
ln 1−et

et
; //reweighting parameter

foreachdi ∈ D do Dt+1(i) := Dt(i) · e
−αt·class(di)·ft(di); //reweigh each tuple in D

Normt :=
∑|D|

i=1
Dt+1(i);

foreachdi ∈ D do Dt+1(i) :=
Dt+1(i)

Normt
; //normalize new weights

endfor

ff inal(.) := sign(
∑k

t=1
at · ft(.)

end

Figure 2: AdaBoost: an adaptive boosting algorithm. This version is for binary
category variableY = {−1,+1}.

Idea. Boostingis applied to a specific classification algorithm calledBaseLearner1.

Each itemd ∈ D is assigned a weight. On first step,w(d) = 1

|D| . On each step,
a classifierfi is built. Any errors of classification, i.e, itemsd ∈ D, such that
f(d) 6= class(d) are given higher weight.

On the next step, the classication algorithm is made to ”pay more attention” to
items inD with higher weight.

The final classifier is constructed by weighting the votes off1, . . . fk by their
weighted classification error rate.

AdaBoost. The Adaptive Boosting algorithm [1] (AdaBoost) is shown in Fig-
ure 2.

Weak Classifiers. Some classifiers are designed to incorporate the weights of
training set elements into consideration. But most, likeC4.5, do not do so. In
order to turn a classifier likeC4.5 into a weak classifier suitable forAdaBoost,
this classifier can be updated as follows:

• On stept, given the weighted training setDt, wesampleDt to build a train-
ing setD′

t. The sampling process usesDt(i) as the probability of selection
of di into D′

t on each step.

Voting

When multiple classification algorithmsA1, . . .Ak are available,direct voting can
be used to combine these classifiers.

1It is also commonly calledweak classifier.

6

Let D be a training set, andf1, . . . fk are the classifiers produced byA1, . . . ,Ak

respectively onD. Then the combined classifierf is constructed to return the class
label returned by theplurality of classifiersf1, . . . fk.

References

[1] Y. Freund, R.E. Shapire. Experiments with a New BoostingAlgorithm.
In Proceedings, 13th International Conference on Machine Learning
(ICML’96), pp. 148–156, 1996.

7

