
. .
Spring 2018 CSC 466: Knowledge Discovery in Data Alexander Dekhtyar
. .

Lab 4, Information Retrieval and Text Mining

Due date: Thursday, May 24, 11:59pm

Note: I am assigning this lab a bit early, because we do not have a May

15 lecture. Start working on this lab after you complete Lab 3.

Lab Assignment

This is a pair programming lab.

As part of this assignment you are asked to analyze a collection of text
documents, the Reuter 50-50 dataset that is often used in text mining and
text classification tasks. You will create vector space representations of the
documents from this dataset, and will use these representations to conduct
two studies:

• Study 1: Determine if the K-Nearest Neighbors algorithm can be
used to reliably establish the authorship of the text documents in the
dataset.

• Study 2: Determine if Agglomerative Hierarchical Clustering algo-
rithm can be used to group the documents by authors (i.e., determine
the authorship purity of clusters constructed by the algorithm.

Notice that you get to reuse some of the Lab 3 code in this assignment.

The Data Collection: Reuter 50-50 Datasets

Reuter 50-50 collection of text documents1 is a well-known and well-studied
dataset often used in machine learning and information retrieval coursework,
as well as research.

1https://archive.ics.uci.edu/ml/datasets/Reuter 50 50

1



The dataset consists of a collection of news stories published by the Reuters
news agencies. The dataset is broken into two parts called training set and
test set. For our lab, the intents of these two parts of the dataset are not
important and we will use both parts of the dataset together.

The dataset was constructed to study machine learning algorithms for
authorship attribution. It consists of a selection of 50 authors who published
news stories with Reuters. For each author, exactly 100 news stories they
authored is placed in the dataset. 50 of the stories are placed in the training
set part of the dataset and the remaining 50 – in the test set.

The dataset is available both from Lab 4 course web page, as well as
from the University of California at Irvine (UCI) Machine Learning Datasets
repository as a single zip file named C50.zip. When the file is unzipped, it
creates the following directory structure:

dekhtyar@csclnx11:~/.../C50 $ ls -al

total 8056

drwx------. 4 dekhtyar domain^users 4096 Apr 7 23:50 .

drwx------. 5 dekhtyar domain^users 4096 Apr 7 23:48 ..

drwx------. 52 dekhtyar domain^users 4096 Apr 7 23:50 C50test

drwx------. 52 dekhtyar domain^users 4096 Apr 7 23:50 C50train

-rw-------. 1 dekhtyar domain^users 8194031 Apr 7 22:15 C50.zip

dekhtyar@csclnx11:~/.../C50 $ ls C50test/

AaronPressman JaneMacartney LydiaZajc RobinSidel

AlanCrosby JanLopatka LynneO’Donnell RogerFillion

AlexanderSmith JimGilchrist LynnleyBrowning SamuelPerry

BenjaminKangLim JoeOrtiz MarcelMichelson SarahDavison

BernardHickey JohnMastrini MarkBendeich ScottHillis

BradDorfman JonathanBirt MartinWolk SimonCowell

DarrenSchuettler JoWinterbottom MatthewBunce TanEeLyn

DavidLawder KarlPenhaul MichaelConnor TheresePoletti

EdnaFernandes KeithWeir MureDickie TimFarrand

EricAuchard KevinDrawbaugh NickLouth ToddNissen

FumikoFujisaki KevinMorrison PatriciaCommins WilliamKazer

GrahamEarnshaw KirstinRidley PeterHumphrey

HeatherScoffield KouroshKarimkhany PierreTran

The C50train directory has exactily the same structure.

Each directory inside C50train and C50test directories bears the name
of one of the 50 authors. Inside each directory is 50 .txt files containing the
stories written by that author. Each story is in a separate file whose name
follows the following pattern:

<number>newsML.txt

where <number> is a 5- or 6-digit number representing the unique ID of the
story2.

2The Reuter 50-50 dataset was built out of a much larger data set of Reuters stories,

so there is no rhyme or reason to the numbers contained in the filenames. All you need

to know is that they are all unique.

2



The Task

Preliminary Steps

The first task for you assignment is to create vectorized tf-idf representations
of each document and to store these representations.

Write a program textVectorizer.java or textVectorizer.py3 that takes
as input the location of the root of the Reurters 50-50 dataset directory, and
produces, as the result, a file containing the vectorized tf-idf representations
for each of the 5000 documents in the dataset. The name of the output
file can be an input parameter to your program (for the sake of flexibility).
Additionally, your program shall produce (to make your life easier during
the evaluation stages) a ground truth file that for each document (identified
by its file name) stores the name of the author (name of the directory the
file is in). The ground truth file can have any format you want, but a simple
CSV file looking as follows:

421829newsML.txt,AaronPressman

424074newsML.txt,AaronPressman

...

236352newsML.txt,AlanCrosby

293241newsML.txt,AlanCrosby

...

Note: You must write the entire vectorizer from scratch with-
out the use of text vectorization tools/APIs/functionality available
in the specialized packages in the programming language of your
choice. You are explicitly prohibited from using any scikit learn or
nltk Python package functionality for this lab (as well as their counterparts
in other languages). The point of this assignment is to learn how to build
this functionality.

You can use standard parsing techniques available to you in your pro-
gramming languages such as split() and strip() methods. You can take
advantage of the data structures provided to you by the NumPy package (or
similar packages in other programming languages).

When implementing vectorized representations of the documents, please
observe that the overall vocabulary of the Reuter 50-50 dataset is signifi-
cantly larger than the number of unique words used in any specific single
document, and therefore, the tf-idf vectors of individual documents will be
rather sparse.

To support your vectorization efforts, and other tasks of this assignment,
you will implement a Vector class (or a Vector ADT) in your host pro-
gramming language. Your Vector class will store sparse tf-idf vector repre-

3As usual, if you are using a different programming language, name your program

accordingly.

3



sentations of text documents. It shall also implement at least two similarity
score computations for a pair of vectors: cosine similarity and okapi.

Authorship Attribution Through KNN

The first analytical task for this assignment is to implement the K-Nearest
Neighbors classifier and use it to test the accuracy of detecting each of the
authors.

K-Nearest Neighbors requires a distance or similarity metric to properly
operate. You will use the similarity metrics implemented on the previous
stage: cosine and okapi in this exercise.

Write a program knnAuthorship.java/knnAuthorship.pywhich takes as
input the file of vectorized document representations, a value of k (number
of nearest neighbors to check), and a flag indicating the similarity metric
to be used in the computation4 The output of the program shall be and
authorship label predicted for each of the documents in the Reuters 50-50

dataset. Essentially, your KNN implementation shall use an all-but-one

validation (take a document, find k nearest neighbors among the remaining
4999 documents in the dataset). The output can be printed out directly to
the screen, or placed in an output file.

To evaluate the accuracy of the predictions, write an classifierEvaluation.java
or classfierEvaluation.py program that takes as input the file generated
by the knnAuthorship program, as well as the ground truth file (remember
you had to generate one!)5, and produces as the result the following output:

• For each author in the dataset, output the total number of hits (cor-
rectly predicted documents), strikes (false positives predicted) and
misses (document written by the author, which were not attributed
to the author).

• For each author in the dataset report the precision, the recall, and the
f1-measure of the KNN procedure.

• Overall, report the total number of documents with correctly predicted
authors, the total number of documents with incorrectly predicted
authors, and the overall accuracy of the prediction.

• The full 50x50 confusion matrix in a CSV form (with the top row,
and first column containing the author names/labels). This can be
dumped directly into an output file, rather than printed to screen.

Your analytical goal is to determine which authors are easier to predict
authorship for, and which authors are hard (and who they tend to get con-
fused with). You can do the final analytical step by hand - simply looking at
the results of your evaluation program, or, alternatively, you can add code
to your evaluation program that reports this information out automatically.

4If needed, your program can also take any other well-documented input parameters.
5It may be helpful if both files are stored in exactly the same format.

4



Authorship Attribution Through Clustering

Your second analysis comes in a form of clustering the vectorized represen-
tations of the Reuters 50-50 documents. For this project is it convenient
to use hierarchical agglomerative clustering. While K-means also allows for
clustering for a given number of clusters (50, in our case), hierarchical clus-
tering method is more flexible in that not only does it allow for building of
50 clusters, but if some of these clusters are degenerate (e.g., one of the 50
cluster is a single outlier document), you may be able to construct a larger
set of clusters from the same dendrogram.

You are allowed - and in fact - encouraged to reuse your Lab 3 imple-
mentation of the hierarchical clustering algorithm. Recall that the actual
clustering procedure should take as input the distance matrix, so you should
be able to reuse significant portions of your code without having to deal with
different data formats. The almost week-long overlap in available instruc-
tions for Lab 3 and Lab 4 should provide you a good incentive to plan ahead.

For this analytical tasks you will write the following programs. First, build
a program clusteringAuthorship.java/clusteringAuthorship.py, which
takes as input a the file of vectorized document representations, and any pa-
rameters for setting up your hierarchical clustering implementation (e.g.,
the linkage). Just as your Lab 3 implementation, this program shall output
(directly to file, please! it will be very large!) the XML or JSON version of
the dendrogram representing the clustering.

Your second program, clusterEvaluation.java/clusterEvaluation.py
shall take as input a dendrogram generated by clusteringAuthorship and
shall analyze it as follows:

• First, it shall attempt to construct 50 meaningful clusters based on the
input dendrogram. In most cases, this should result in simply undoing
the last 50 mergers, however, please be mindful, that some clusters
that you may get this way may be way too small to be considered an
appropriate representation of a single author. You may want to con-
tinue splitting into clusters until you have 50 clusters of ”reasonable”
sizes. Treat all small-size clusters as essential outliers.

• Second, for the list of clusters you come up with, determine the cluster
purity scores (for each cluster), i.e., the percent of the cluster that
has the cluster plurality author label. For each cluster, identify the
plurality class. Sort the authors by how pure the cluster/clusters that
are assigned to them are.

• Third, report the accuracy of detecting each author. A document is
a hit if it belongs to a cluster where its author is a plurality label.
Otherwise it is a miss. Compute for each author the precision and
the recall (note that if an author is a plurality label in more than one
cluster, you will need to combine your hits and misses from multiple
clusters).

5



• Finally, report the overall purity of clusters/ accuracy of detecting
authors.

Tuning Parameters

When experimenting with both analytical methods you may wind up run-
ning your analyses multiple time with a different set of parameters. For both
methods, you can construct different datasets based on what pre-processing
techniques were used to create them. Generally speaking, you have four key
choices to consider:

• No stopword removal, no stemming.

• Stop word removal, but no stemming.

• Stemming, but no stopword removal.

• both Stemming and stopword removal.

Within this set of possibilities, different lists of stop words can be used to
create more possible inputs to both the classification and clusering author-
ship attribution methods.

For the KNN-based authorship attribution, you have an additional hyper-
parameter to tune: K, the number of neighbors to use. You have some
natural boundaries on K as part of your procedure: clearly, K ≤ 49, and
quite possibly needs to be made significantly smaller.

For the clustering-based authorship attribution, the key hyperparameter is
your choice of linkage, with single, complete and average as viable choices at
a minimum. (Note that your Lab 3 implementation should also have a pa-
rameter specifying whether the dataset needs to be normalized/standardized
prior to processing, but due to the construction of the tf-idf vectors, this pa-
rameter is not necessary in this lab).

Reporting your findings

Prepare a report that describes the following:

• The exepriment you ran for each of the two analytical methods for
determining authorship: what datasets were explored, which values of
hyperparameters were investigated.

• The results of your best runs for each of the two analytical methods.
You should present in tabular (or easy to read text) form the accuracy
measures for determining each author, as well as the overall accuracy.

• A reflection on each of the methods w.r.t. the method’s overall ability
to properly attribute authorship of the articles, as well as any specific
information that stands out: which authors are easy to predict? which
are hard? which tend to be confused with each other?

6



• A comparison of two methods to each other and a final determination
of which method proved to be more accurate.

Submission

For this lab we will use CSL handin tool.

You shall submit the following.

• All the code you wrote to fulfill the requirements of this lab.

• A README file with instructions on how to run your code to perform
different tasks of the assignment.

• Output files generated by your evaluation programs for both analytical
methods for authorship detection (specify filenames in README file).

• Your report in PDF format.

Place all files and directories except for the report file, into a single archive
named lab04.tar.gz or lab04.zip and submit it. Submit the PDF version
of the report separately, outside of the archive.

Use handin to submit as follows:

$ handin dekhtyar lab04-466 <FILES>

Good Luck!

7


