
. .
Spring 2018 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Lab 2: Supervised Learning

Due date: Tuesday, May 2, 11:59pm. (Note: another lab assignment will
start in the lab session on the due day.)

Lab Assignment

In this assignment, you are asked to implement a variant of C4.5 decision
tree classifier which uses information gain measure to induce decision trees.
Your implementation will not be domain-specific but will be restricted by
the types of attributes that can be found in the datasets you are given. You
will run two sets of tests for your implementation: one will test the accuracy
of the classifiers you are building, and the other will serve as the endurance
tests for your implementation.

Assignment Preparation

This is a pair programming assignment. Pick your partner at will.

Datasets

The assignment uses a number of synthetically generated datasets. The
main dataset for this assignment is called ELECTIONS and is described in
detail below. Other datasets may be made available to you as well.

All datasets are constructed in the same way and have a number of file
formats associated with them. In particular, the following data formats are
used in this lab:

• Domain description. The structure (schema) of each dataset is
described in an XML file. The format for domain description files is
specified below. Your program will take these files as input in order
to determine the attributes of the dataset, and the various attribute
values.

1

<!ELEMENT domain (variable+ Category)>

<!ELEMENT variable (group+)>

<!ELEMENT category (choice+)>

<!ELEMENT group (EMPTY)>

<!ELEMENT choice (EMPTY)>

<!ATTLIST variable name CDATA #REQUIRED>

<!ATTLIST group name CDATA #REQUIRED

p CDATA #IMPLIED>

<!ATTLIST Category name CDATA #REQUIRED>

<!ATTLIST choice name CDATA #REQUIRED

type CDATA #REQUIRED>

Figure 1: The DTD for the dataset domain description XML files.

• Words data format. This is a CSV (comma-separated values) file
format for representing the actual dataset. Data in this format will
be presented in its raw form, with the actual values of each attribute
being reported. For example, if a dataset contains an attribute Gender
with possible values "Male" and "Female", the CSV file in the words

format will include the actual values "Male" and "Female" in. This
format is not necessarily convenient for processing, but is more human
readable of the two CSV data formats provided to you.

• Numbers data format. This is a CSV file format for representing
the datasets. Data in this format is presented by encoding each at-
tribute value with an integer value in the range from 1 to the size of
the domain of the attribute. For example, if a Gender attribute has
two values, "Male" and "Female", these values will be coded as 1 and
2 (in the order in which the values appear in the domain description
file). This format is more convenient for automated processing, but is
not human-readable.

Domain Description File Format

For each dataset you encounter in this lab, you are provided with an XML
file, describing its domain. The DTD of the domain XML files is shown in
Figure 1.

A brief explanation of the file format follows.

Root element. The root element of the domain XML files is the <domain>
element.

Structure. The domain described by the XML file is essentially a rela-
tional schema which includes a special category attribute. For our lab, one
more restriction is in order: all dataset columns have a finite (and usually,

2

small) number of possible values. The XML file lists each attribute in turn,
enumerates their values and identifies the category variable and the list of
categories.

The <domain> element includes one or more <variable> elements describ-
ing the columns of the dataset, followed by a single <Category> element
describing the category variable.

Columns. Dataset columns are described by the <variable> elements.
Each <variable> element must include the name attribute, which provides
the name of the column. Each <variable> element contains a list (one or
more) of possible values, represented as <group> elements.

Column values. A <group> element describes a single value a dataset
column take. The element is empty, but has two attributes. The mandatory
name attribute specifies the value itself. The optional p attribute provides
the probability of occurrence of this value in the dataset1.

Category variable. The category variable is introduced via the <Category>
element. A single <Category> element is allowed in each domain XML file.
The mandatory name attribute stores the name of the category variable.
The content of the <Category> element is one or more <choice> elements,
each encoding an individual category (class).

Categories. Individual categories/classes are described by <choice> ele-
ments. These elements have empty content, but come with two mandatory
attributes. The name attribute contains the name of the category used in
the words formatted CSV filed. The type attribute provides the numeric
label for it, that will be used in the numbers formatted CSV files.

An example of a simple domain, containing two data columns, Gender

with values "Male" and "Female", and Major with possible values "CS" and
"ENG" and a category variable "Genre" with category labels "SCIFI" and
"Romance" is shown in figure 2,

Your program will take XML files specifying domains as input. Your code
is responsible for parsing the files and using the information contained in
them in preparing the computed decision trees.

ELECTIONS dataset

The main dataset you will be working with is the ELECTIONS dataset. As
such, it is described in detail here. Other datasets may be released through-
out the lifetime of the assignment. Their descriptions will be supplied using
README files and the XML domain description files.

1This attribute is used in dataset generation, but you can ignore it in your work.

3

<?xml version="1.0" encoding="utf-8"?>

<domain>

<variable name = "Gender">

<group name = "Male" p =".5" />

<group name = "Female" p =".5" />

</variable>

<variable name = "Major">

<group name = "CS" p = ".40" />

<group name = "ENG" p = ".60" />

</variable>

<Category name = "Genre">

<choice name = "SCIFI" type ="1" />

<choice name = "Romance" type ="2" />

</Category>

</domain>

Figure 2: An XML file describing a simple dataset.

The ELECTIONS dataset describes the voting preferences of individual vot-
ers in the 2008 US Presidential elections. The dataset is synthetic, i.e., it

was artificially created, but the information contained in the dataset roughly

follows the Presedential election exit polls.

Each record in the dataset describes a variety of characteristics of an
individual voter. The category variable of the dataset is Vote: the choice
of the voter in the Presidential elections. For simplicity, vote has only two
values: Obama and McCain.

A record in the ELECTIONS dataset has the following format:

(Id, Party, Ideology, Race, Gender, Religion, Income, Education, Age, Region,

BushApproval,Vote)

1. Id: unique identifier of the record. Used to identify individual voters.
This attribute shall be excluded from decision tree induction.

2. Party. Political party of the voter. The values are:

Numeric Value Actual Value XML Value
1 Democratic "Democratic"

2 Republican "Republican"

3 Independent "Independent"

3. Ideology. Political ideology of the voter. The values are:

Numeric Value Actual Value XML Value
1 Liberal "Liberal"

2 Moderate "Moderate"

3 Conservative "Conservative"

4. Race: race of the voter. The values are:

4

Numeric Value Actual Value XML Value
1 Black (African-American) "Black"

2 White (Caucasian) "White"

3 Other "Other"

5. Gender: the gender of the voter. The values are

Numeric Value Actual Value XML Value
1 Male "Male"

2 Female "Female"

6. Religion: religion of the voter. The values are:

Numeric Value Actual Value XML Value

1 Protestant "Protestant"

2 Catholic "Catholic"

3 Other "Other"

7. Income: the income bracket (annual income) of the voter’s family. The
values are:

Numeric Value Actual Value XML Value
1 Less than $30,000 "Less than 30000"

2 $30,000 --- $49,999 "30000-49999"

3 $50,000 --- $74,999 "50000-74999"

4 $75,000 --- $99,999 "75000-99999"

5 $100,000 --- $149,999 "100000-149999"

6 Over $150,000 "150000+"

8. Education. The highest level of education for the voter. The values
are

Numeric Value Actual Value XML Value
1 High school diploma or less "H.S. diploma or less"

2 Undergraduate study/degree "College"

3 Post-graduate study/degree "Post-Grad"

9. Age. The age group of the voter. The values are:

Numeric Value Actual Value XML Value
1 18 -- 29 "18-29"

2 30 -- 44 "30-44"

3 45 -- 64 "45-64"

4 65 and above "65+"

10. Region: the geographic region where the voter lives. The values are:

Numeric Value Actual Value XML Value States

1 Northeast "Northeast" ME, NH, VT, MA, RI, CT, PA, NY, NJ, DE, MD, DC
2 South(east) "South" VA, WV, KY, NC, SC, TN, GA, FL, AL, MS, LA, AR, TX, OK
3 Midwest "Midwest" OH, IN, MI, IL, MO, IA, MN, WI, ND, SD, NE, KS
4 West "West" MT, ID, WA, AK, HI, WY, CO, UT, OR, NV, NM, AZ, CA

11. Bush Approval: information on whether or not the voter approves of
George W. Bush in his capacity as the President of the US. The values
are:

Numeric Value Actual Value XML Value
1 Approve "Approve"

2 Disapprove "Disapprove"

5

12. Vote. The choice of the voter in the 2008 Presidential Election. This
is the category variable in this dataset. The values are:

Numeric Value Actual Value XML Value

1 Barack Obama "Obama"

2 John McCain "McCain"

You are provided with the following CSV files.

Set Filename Tree Format Size

1 tree02-20-words.csv small tree words 20 voters
tree02-20-numbers.csv small tree numbers 20 voters

2 tree02-100-words.csv small tree words 100 voters
tree02-100-numbers.csv small tree numbers 100 voters

3 tree01-100-words.csv large tree words 100 voters
tree01-100-numbers.csv large tree numbers 100 voters

4 tree01-1000-words.csv large tree words 1000 voters
tree01-1000-numbers.csv large tree numbers 1000 voters

Formats. There are two formats in which data files are represented. Files
in the words format contain the XML values of each attribute from the tables
above. Files in the numbers format represent the same data using Numeric
values from the tables above.

For example, here is a record in the words format and the same record in
the numbers format:

3,Independent,Moderate,White,Male,Catholic,30000-49999,College,45-64,Northeast,Approve,McCain

3,3,2,2,1,2,2,2,3,1,1,2

These files were produced using two different decision trees. Small tree is
a decision tree constructed out of a relatively small subset of all attributes.
Large tree is a decision tree constructed out of all or almost all attributes
(not every attribute appears on every path, though). The files within the
same ”set” contain the same records: thus, tree02-20-words.csv and
tree02-20-numbers.csv contain the same 20 records in two different for-
mats. Records in files from different sets are different, so, overall, you have
access to 120 voter records for the small tree and 1100 voter records for the
large tree.

Note: Each CSV file contains three header lines. The first line contains
the comma-separated list of names, the second line — the information about
the domain size for the domain of each attribute. The third line specifies
(by name) the category attribute.

For the ELECTIONS dataset, the training set file header looks as follows:

Id,Political Party,Ideology,Race,Gender,Religion,Family Income,Education,Age,Region,Bush Approval,Vote

-1,3,3,3,2,3,6,3,4,4,2,2

Vote

6

Conventions: If the second line contains -1, the corresponding attribute is
a unique Id and should not be used in decision tree induction.

Note: All attributes in the ELECTIONS dataset are categorical for the
purposes of this assignment. (Technically speaking, Income is ordinal, and
Education and BushApproval can also be viewed as ordinal, but this will
not affect your implementation). Thus, your program will be required

to handle properly categorical attributes, but proper handling of numeric
attributes is not required.

The files can be downloaded from the course web page:

http://www.csc.calpoly.edu/∼dekhtyar/466-Spring2012/labs/lab02.html

The full description of the ELECTIONS dataset and all the files are available
from the datasets wiki:

https://wiki.csc.calpoly.edu/datasets/wiki/Voting

Decision Tree Induction

Your assignment is three-fold. You will

1. Write an implementation of the C4.5 decision tree induction algorithm
with information gain/information gain ratio measure. Your imple-
mentation shall take as input the data from the ELECTIONS dataset
and output an XML representation of the decision tree (the format is
described below).

2. Write the classification program, that takes as input an XML repre-
sentation of a decision tree, a CSV file of test cases, and outputs the
category for each test case.

3. Evaluate the performance of your implementation using techniques
learned in class. Perform accuracy and endurance analyses of your
implementation.

Task 1: C4.5 Decision Tree induction

Program Input

You will write a program InduceC45.java or InduceC45.py2 implementing
the C4.5 classifier that uses either information gain or information gain ratio

2This assignment assumes Java or Python as the programming language of choice w/o
loss of generality. Feel free to implement in any language you want as long as you provide
compilation/running instructions.

7

measures (or both) to determine the next attribute on each step of the
decision tree construction process3.

Your program shall be run as follows:

java InduceC45 <domainFile.xml> <TrainingSetFile.csv> [<restrictionsFile>]

Here, <domainFile.xml> is the name of the XML file containing the do-
main description for the dataset, <TrainingSetFile.csv> is the name of
the input training set file. <restrictionsFile> is the name of text file.
This text file will contain a single vector. The size of the vector is equal to
the number of columns in the dataset without the category variable. Each
element of the vector is either 0 or 1.

The meaning of the restrictions file is straightforward. This (optional) file
indicates which attributes of the dataset to use when inducing the decision
tree. A value of 1 means that the attribute in the corresponding position
is to be used in the decision tree induction; a value of 0 means that the
attribute is to be omitted. For example, to induce a decision tree using
only Race, Gender and Region attributes of the ELECTIONS dataset, we can
create a restrictions file restrictions01.csv with the following content:

1,0,0,1,1,0,0,0,0,1,0

(Note, that we also included Id in the dataset, although it won’t be used
for decision tree induction.)

If <restrictionsFile> is absent from the command line, your program
shall use all non-ID attributes of your dataset to induce the decision tree.

Program Flow

C4.5 Your program shall read and parse input files. It shall correctly
identify the domains for all columns, and the list of available categories. It
shall also correctly determine the training set. It shall then implement the
C4.5 algorithm for decision tree induction.

Information Gain. Because the target datasets contain mostly categori-
cal attributes with small domains (only one attribute has the domain of size
6), it is expected that you will implement the computation of the informa-
tion gain measure to determine the splitting attribute on each step of the
decision tree induction process.

3You are welcome to develop your code in other programming languages. For simplicity,
instructions here assume Java as the programming language. If you choose a different
language to implement this assignment, translate the instructions specified herein so that
they apply to your programming language.

8

Information Gain Ratio. However, if you determine that information
gain does not lead to robust results, feel free to implement instead (or,
better yet, in addition to) the information gain ratio measure.

Internal data structures. The design of the internal data structures in
support of decision tree induction is left up to you. Essentially, you need to
determine the following:

• How to store the input training set. Possible options (this list is NOT
exhaustive!) include storing all data in an array or a list in main
memory; using Oracle or MySQL DBMS to store the records, and
JDBC to retrieve necessary information; no memory-resident storage
at all — the .csv file is reread and re-parsed on every scan.

• How to split a training set. On each step of the C4.5 process training
sets get split. Because this is such a common operation, your training
set representation mechanism should come with a split method that
separates it into two or more pieces.

• How to store the emerging decision tree. You will have to design an
internal representation of the decision tree, complete with the tradi-
tional operations for of insertion of new node and traversal. Note,
that this representation will also be needed in the second task of this
assignment.

Program Output

Once you generate the final decision tree, your program shall output it to
<stdout> in an XML format described below.

Note: There exists a general XML standard called PMML for representation
of decision trees (as well as other data mining information). However, this
standard is overly complex for the purposes of our assignment. Instead,
your program will generate an XML document in a simplified format. The
structure of the XML document will mimic the structure of the decision tree
it is designed to represent.

Output Format. The DTD of the XML format for the output decision
tree is shown in Figure 3. The XML description of decision trees consists of
four XML elements.

• Root. The root of the XML document is an XML element <Tree>.
This element has an attribute name associate with it. The name of the
tree is not used in processing, only in identification. Feel free to assign
a name in any way you deem necessary.

• Nodes. The root element will have a single child element <Node>.
The <node> element has an attribute var whose value is the name of

9

<!ELEMENT Tree (node)*>

<!ATTLIST Tree

name CDATA #IMPLIED

>

<!ELEMENT node (edge)*>

<!ATTLIST node

var CDATA #IMPLIED

>

<!ELEMENT edge ((node*)|(decision)*)>

<!ATTLIST edge

var CDATA #IMPLIED

num CDATA #IMPLIED

>

<!ELEMENT decision EMPTY>

<!ATTLIST decision

p CDATA #IMPLIED

choice CDATA #IMPLIED

end CDATA #IMPLIED

>

Figure 3: DTD for the decision tree XML documents.

one attribute from the dataset. For the ELECTIONS dataset, the name
will from the following list:

"Political Party" "Ideology" "Race" "Gender" "Religion"

"Family Income" "Education" "Age" "Region" "Bush Approval"

• Edges. Each <node> element has as its chldren a number of <edge> el-
ements. Typically, the number of children of a <node> element is equal
to the number of possible values in the domain of the dataset attribute
specified as the value for its var attribute (e.g.,<node var="Education">

is expected to have three children <edge> nodes, while <node var="Region">

is expected to have four).

Each <edge> element has two attributes: var and num attribute. The
value of the var attribute of an <edge> element represents one of the
values in the domain of the column represented by the partent <node>
element, while the the value of the num attribute contains the numeric
label assigned to this value, as shown, for example, in the following
XML fragment:

<node var="Party">

<edge var = "Democratic" num="1">...</edge>

<edge var = "Republican" num="2">...</edge>

<edge var = "Independent" num ="3">...</edge>

</node>

10

The exact values the the var attribute for each domain value are
found in the input domain XML file. The numeric values correspond-
ing to them are assigned in the order of their appearance in the XML
file.

• Recursion. Each <edge> node will contain either exactly one <node>
element child or exactly one <decision> element child. The <node>

element will have the structure as described above. No two <node>

elements on the same path from the root node may have the same
value for the var attribute.

• Leaf nodes. The leaf nodes in the XML document are <decision>

element nodes. A single <decision> element node will appear as a
child of an <edge> node. Each path in the XML tree will be terminated
with a <decision> node. This node has three attributes. The end

attribute takes values from ”1” to the total number of classes, while
the choice attribute has values from the class labels described by
<choice> elements in the domain XML file. In case of the ELECTIONS

dataset, end can take values 1 (meaning the path leads to an Obama
voter) or 2 (meaning the path leads to a McCain voter), while the
choice attribute takes accordingly the values "Obama" and "McCain".

The third attribute is p. This attribute represents the probability
that a record matching the path to the decision node will belong to
the specified class. This attribute can be omitted in your output, set
to 1, or can be set to the actual probability computed by the C45

Algorithm.

Example. The following is a simple example of a decision tree in the XML
format:

<Tree name = "test">

<node var ="Gender">

<edge var ="Female" num="2">

<node var = "Bush Approval">

<edge var = "Approve" num="2" >

<decision end = "2" choice = "McCain" p = "0.9"/>

</edge>

<edge var = "Disapprove" num="1">

<decision end = "1" choice="Obama" p = "0.95"/>

</edge>

</node>

</edge>

<edge var = "Male" num="1">

<node var = "Ideology">

<edge var = "Liberal" num = "1">

<decision end = "1" choice ="Obama" p = "0.99"/>

</edge>

<edge var = "Moderate" num="2">

<decision end = "1" choice = "Obama" p = "0.7"/>

</edge>

<edge var = "Conservative" num ="3">

<decision end = "1" choice = "McCain" p = "0.95"/>

11

Gender

IdeologyBush Approval

McCain
McCain

Obama Obama Obama

Approve Disapprove

Female Male

Liberal Moderate Conservative

0.9 0.95
0.7 0.95

0.99

Figure 4: A simple decision tree.

</edge>

</node>

</edge>

</node>

</tree>

This XML file represents the decision tree depicted in Figure 4.

Task 2: Classification

Write a program Classify.java that will take as input the XML description
of a decision generated by your InduceC45.java program and a CSV file of
records to be classified and outputs the classification result for each vector.

Classify.java is run as follows:

java Classifier <CSVFile> <XMLFile>

If the input CSV file is a training set (i.e., if it comes with the category
attribute), your program shall

• ignore this attribute while classifying the rest of the record.

• compare the result of classifying the record with the actual class label.

• keep track of the number of classification errors found while classifying
all records in the file.

• at the end of the run report :

1. total number of records classified;

2. total number of records correctly classified;

3. total number of records incorrectly classified;

4. overall accuracy and error rate of the classifier.

12

Optionally, you may also output the confusion matrix for the run.

If the input CSV file does not contain the cateogory attribute, then your
program only needs to output predicted class labels for each record.

Note: In general, your program shall for each input record, print the record
and then print the class label for it. However, you may want to include a
silent run option in your program, that will report only rowID and class
label pairs (possibly - comma-separated), but won’t print full contents of
each record. This may by useful elsewhere in the lab.

Task 3: Evaluation

You shall perform cross-validation analysis of the accuracy of your classifiers
using the training set data made available to you.

To that extent, you shall implement a program Validation.java, which
will take as input the training test file, the optional restrictions file and an
integer number n specifying how many-fold the cross-validation has to be.

For simplicity we assume that n = 0 represents no cross-validation (i.e.,
use entire training set to construct a single classifier), while n = −1 repre-
sents all-but-one cross-validation.

The Validation.java program shall perform the n-fold cross-validation
evaluation of your InduceC45 implementation. It shall produce as output
the following information:

1. The overall confusion matrix.

2. The overall recall, precision, pf and f-measure (compute these numbers
with respect to recognizing Obama’s voters).

3. Overall and average accuracy (two-way) and error rate of prediction.

Note: Overall measures are reported for the entire result of cross-validation.
E.g., if you are running s 2-way cross-validation on 20 records, overall accu-
racy is computed by adding up all correct predictions from all both iterations
of the cross-validation process, and dividing this number by 20. The av-

erage accuracy is computed as the mean of the accuracies achieved on the
first and the second iterations of the cross-validation process.

Submission Instructions

Use the handin tool to submit your files. Each group submits exactly one
copy of all materials. You will submit the following files:

• README. Shall contain the names and email addresses of all students
in the team. Also, put any specific instructions and notes in this
file. (e.g., if you choose a different implementation language, include
translation/running instructions).

13

• Your programs: InduceC45, classifier, Evaluate, and any supple-
mentary files.

• The output of Evaluate on the tree01-1000-numbers.csv (or tree01-1000-words.csv)
input with 10-fold cross-validation. Dump the output into a text file
and submit.

Archive your files into a .zip or a .tar.gz archive.

To submit use the following command:

$ handin dekhtyar lab02-466 <files>

14

