Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.

Data Mining:
Classification/Supervised Learning
Potpourri
Contents
1. C4.5. and continuous attributes: incorporating continuous attributes in@t.5 Algorithm.
2. C4.5. and overfit: dealing with overfit in decision trees
3. kNN: k& Nearest Neighbors learning: alazy evaluationlearning algorithm.
4. Bagging and Boosting: ensembles of classifiers to the rescue!
5. Random Forests: taking ensemble classifiers to the next level

1 Handling of Continuous Attributes in C4.5. Algorithm

Notation. Let D be a dataset over the list of attributds= {A4,,...,A,}. Let
A; € A be acontinuous attribute.

A binary split of D on attributeA; at valuea is a pairD~ C D, D™ C D, such
that:

1. DDuDt=D

2.D-NDt =0

3. (Vd € D7)d[A;] < o

4. (Vd € D)d[A;] > «;

Idea. On each step o€4.5 Algorithm, for each continuous attributé; find a
binary split with the bestinformation gain (or information gain ratio). More
specifically, the enthropy of a binary split 6f on A; usinga is

D]

DT

— -enthropy(D™).
D]

enthropya,o(D) = —

1

function selectSplittingAttribute(A, D threshold); //uses informati on gain
begin
p0 := enthropy(D);
for each A; € Ado
if A; iscontinuoughen
x = findBestSplit(A;, D);
plAi] := enthropya, «(D);

else
plA;] := enthropya,(D);
endif
Gain[A;] = p0 — p[A;]; [/ conpute info gain
endfor

best := arg(findMaz(Gainl)));
if Gainlbest] >threshold then return best
else return NULL;

end

begin
initialize associative array®untsi[], . . . , countsg|];
initialize associative arragain;
p0 := enthropy(D);
foreachd e Ddo //Step 1: scan data
for j =1to kdo
if class(d) == c; then
counts;[d[A;]] :== counts;[d[A;:]] + 1;
else

endif
endfor
endfor
foreach z: index of instance ofounts; do
[/ conputes enthropy of binary split at x
Gain[z] := p0 — enthropy(D, A;, x, countss, . .. ,counts);
endfor
best := arg(findMaz(Gain])));
return best;
end

function findBestSplit(4;, D)/ / fi nds best binary split for a continuous attribute

counts;[d[A;]] := counts;[d[A;]] +0; [/ instantiates countsj[d[Ai]]

Figure 1. A modified version a$electSplittingAttribute() function for theC4.5
Algorithm . This version finds the best binary split for any continuotiskate.

Theinformation gain obtained by usingd; with the binary split atx is:

Gaina, o(D) = enthropy(D) — enthropya, (D).

Finding best binary split. The new version of theelectSplittingAttribute()
function is in Figure 1.

e When attributed; is continuous, newselectSplittingAttribute() callsfind-
BestSplit() function, also shown in Figure 1.

¢ To find the best binary split, we

— scan the datasé? and determine the list of all values df.

Note, that whiledom(A4;) is continuous,D contains finitly many dis-
tinct values of4;!

— For each value in of A; from D find enthropya, . (D).
— Find z with the largestnformation gain and return it.

Other adjustments to C4.5. One more adjustment ©4.5needs to be made.

e if a categorical attribute is selected to spliD on the current step of the
algorithm, this attribute isemoved from the attribute list passed in the
recursive calls t&C4.5. (same as before)

¢ if a continuous attribute is selected to spliD on the current step of the
algorithm, this attribute i&ept in the attribute list passed in the recursive
calls toC4.5. (new)

C4.5. and Overfitting

Overfitting. Let Dy, .4ining b€ atraining set for a classification problem, dng,;
be a test set. Left be a classifier trained o qining-

f overfits the data if there exists another classifigt which has
lower accuracythan f on Dy,qining but higher accuracythan f on
Dyest.

Casuses of overfitting:

e Noise in data(e.g., wrong class labels)

e Randomness phenomelftaining set is not representative of the application
domain)

e Complexity of model.(too many attributes, some may not be needed for
classification)

Dealing with overfitting. Two main approaches:

e Pre-pruning or stopping early. E.g., thethird termination condition in
Algorithm C4.5 terminates tree construction early using the user-spdcifie
threshold parameter.

e Post-pruning or pruning a constructed tree In this approach, the clas-
sification algorithm is allowed t@ossibly overfitthe data, but a separate
pruning algorithm will then check the classifier for overfitting.

k-Nearest Neighbors ClassificationNN)

C4.5.andmany other classification techniqueg¢Neural Nets, SVNs, Rule Induc-
tion) areeager: these techniques analyze the training set and construassifeer
before any test data is read

The principle oflazy evaluationis to postpone any data analysis until an actual
guestion has been asked.

In case of supervised learningzy evaluation meansot building a classifier in
advance of reading data from the test data set.

k-Nearest Neighbors Classification algorithm ENN). £NN is a simple, but
surprisingly robustazy evaluationalgorithm. The idea behinkNN is as follows:

The input of the algorithm is a training sB%,in:ng, an instance that needs
to be classified and an integer> 1.

The algorithm computes thiistancebetweend and every itemi’ € D.

The algorithm selects most similar or closesto d records fromD: dy, .. ., dg,
d; € D.

The algorithm assigns td the class of the plurality of items from the list
dl, ey dk

Distance/similarity measures. The distance (or similarity) between two records
can be measured in a number of different ways.

Note: Similarity measuresincrease as the similarity between two objects in-
creases.Distance measuresiecrease as the similarity between two objects in-
creases.

1. Eucledian distance If D has continuous attributes, eag¢he D is essen-
tially a point in V-dimensional space (or aM-dimensional vector)Eucle-
dian distance:

(d1[Ai] — d2[Ai])?,
1

7

d(dy,ds) = \l

n

works well in this case.

2. Manhattan distance If D has ordinal, but not necessarily continuous at-
tributes,Manhattan distance may work a bit better:

d(dy,ds) = z”: |d1[A;] — dafA]|.

3. Cosine similarity. Cosine distance between two vectors is the cosince of the
angle between thenCosine similarity ignores the amplitude of the vectors,
and measures only the difference in thdinectiort

dy-d T di]Aq] - doA;
sim(dy, dy) = cos(dy,d) = 2 2 QAL DAL
o]l - N2l /30 di[A]? - /321y dal A
If d; andd, arecolinear (have the same directionyim(dy,ds) = 1. If dy
andds areorthogonal sim(d, ds) = 0.

Ensemble Learning

Bagging

Bagging= Bootstrapaggegaing.

Bootstrapping is a statistical technique that one to gather many altemafer-
sions of the single statistic that would ordinarily be cédted from one sample.

Typical bootstrapping scenario. (case resampling) Given a sample of size
n, abootstrap sampleof D is a sample of data items drawmandomly with
replacementfrom D.

Note: On average, about 63.2% of items frdmwill be found in a bootstrapping
sample, but some items will be found multiple times.

Bootstrap Aggregating for Supervised Learning. Let D be atraining set,D| =
N. We construct dagging classifierfor D as follows:

Training Stage: Given D, k and a learning algorithrBaseLearner:

1. Createk bootstrapping replications Dy, ..., D, of D by using case
resampling bootstrapping technique.

2. For eachbootstrapping replication D;, create a classifief; using the
Baselearner classification method.

Testing Stage: Given f1, ..., fi and a test record:

1. Computefi(d),... fr(d).
2. Assign aglass(d), the majority (plurality) class amon@ (d), . . ., fx(d).

Boosting

Boosting. Boostingis a collection of techniques that generate an ensemble of
classifiers in a way that each new classifier tries to corridstication errors
from the previous stage.

Algorithm AdaBoost(D, BaseLearner, k) begin
foreachd; € D do D1(4) = 157
fort=1tokdo //main |oop
ft :=BaselLearner(D.);
€t = chass(d Y fi (dy)Dt(‘)
/1 ft is constructed to nininize et
ife:>05then [/ large error: redo
k=k—-1;
break;
endif
ar =3I 1Z5; [/ rewei ghting parameter
foreachd; € D do DtH() Dy (i) - e-@-class(di)-feldi). | [y ewei gh each tuple in D
Normt = Z‘ | Dt+1
foreachd; € D dthH() = L]z,‘;lyf:; /I'normalize new weights
endfor

frinal(.) := sign(Zle as - fi (1)

end

Figure 2: AdaBoost an adaptive boosting algorithm. This version is for binary
category variable@” = {—1,+1}.

Idea. Boostingis applied to a specific classification algorithm caBaseLearner?.

Each itemd € D is assigned a weight. On first step(d) = |D| On each step,
a classifierf; is built. Any errors of classification, i.e, items € D, such that
f(d) # class(d) are given higher weight.

On the next step, the classication algorithm is made to "payenattention” to
items in.D with higher weight.

The final classifier is constructed by weighting the votesfqaf... fi by their
weighted classification error rate.

AdaBoost. The Adaptive Boosing algorithm [2] (AdaBoost) is shown in Fig-
ure 2.

Weak Classifiers. Some classifiers are designed to incorporate the weights of
training set elements into consideration. But most, like5 do not do so. In
order to turn a classifier lik€4.5 into aweak classifier suitable forAdaBoost,

this classifier can be updated as follows:

e On stept, given the weighted training sé};, we sample D; to build a train-
ing setD;. The sampling process usék(:) as the probability of selection
of d; into D; on each step.

Voting

When multiple classification algorithmé, . . . A; are availabledirect voting can
be used to combine these classifiers.

LIt is also commonly calledveak classifier.

Let D be a training set, andy, . .. fi are the classifiers produced by, ..., Ax
respectively orD. Then the combined classifigris constructed to return the class
label returned by thelurality of classifiersfy, ... fx.

Random Forests

Random Forests[1] are an extension of bagging. #agging technique resamples
the training set with replacement, but keeps all attriburi¢be dataset "active” for
each resampled training set.

Random Forests build a collection of decision trees, where each decisiea tr
is built based on a subset of a training aat a subset of attributes.

In a nutshell, &Random Forests classifier works as follows:

1. Input: Let D = {d,...,d,} be the training set, witklass(d;) defined.
LetC' = {ci,...,c,} be the class attribute, and ldt = {4;,... Ay} be
the set of attributes for vectors from, i.e., givend € D,d = (x1,...,xzp).

2. Attribute selection parameter: A numberm << M is fixed throughout
the run of a random forest classifier. This number indicates mmany at-
tributes is selected to build each decision tree in a forest.

3. Forest construction: The classifier builds$v decision treef7, ... Ty. Each
decision tree is built by selecting a subsample of the tngiset, and a subset
of the attributes.

4. Single decision tree construction:Decision tre€l’; is built as follows.

(a) Build a setD; C D drawing randomk data points fromD with re-
placement

(b) Selectn random attributesq{, ..., Al from A without replacement
(c) Using a decision tree induction procedure (see belowild la decision
treeT; for the training seD; restricted to attributedy, ..., AJ .
Do not prune the decision trees.

5. Classification processFor each data point € D, (attempt to) classifyl by
traversing treeqd?, ..., Ty to discover classification decisioms, ..., c".
Choose, aslass(d), the most frequently occurring ift, . .., ¢V class.

Caveats. A decision tre€l’; may not contain all possible values (paths) for some
attribute. This means that some trees won't be able to §assime of the data
points inD. The simplest way to deal with this is to ignore.

Decision tree induction procedures. Both versions oiD3 (C4.5 without the
pruning) andCART, a decision-tree induction algorithm that uses@&iri impu-
rity instead ofinformation Gain-based measures, can be used.

Gini impurity measure. The Gini impurity measure quantifies how often a
randomly choseand randomly labellediata point from a training set will be mis-
labelled.

Let D = {di,...,d,} be atraining set.
LetC = {ci1,...,c,} be aclass variable.

Let D, = {d € D|class(d) = ¢;} be the set of all training set points from
categoryc;.

Let f; = |D;l.

The Gini impurity measurd; is defined as follows:

k
IcD)=>fi- (L= f) = kfi =Y kf}=1=->_kff =>_fi- f;-
i=1 i=1 i=1 i=1 i#j

References

[1] Breiman, L. (2001). Random forests. Machine learnirtg(14, 5-32.

[2] Y. Freund, R.E. Shapire. Experiments with a New Boost&lgorithm.
In Proceedings, 13th International Conference on Machine rhieg
(ICML’'96), pp. 148-156, 1996.

