
. .
Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Information Retrieval
Extending Vector Space Model

Vector Space Model for IR can be extended/augmented in a number of ways:

• Feedback processing.

• Thesaurus for matching synonyms/similar words.

• Inverted Indexes for improving retrieval speed.

• Postings files for proximity queries.

Feedback Processing

Relevance feedback processing is a collection of IR techniques that userele-
vance judgements obtained from humans1 to refine (and, in theory,improve) the
results of a retrieval procedure.

Process. Let q be a user query to a document collectionD. Suppose the query
returns the setDq of documents.

A human analyst (user of the IR system) then examines some of the documents
in the setDq and identifies two setsDr

q : a set ofrelevant documentsandDirr
q : the

set ofirrelevant documents. Note that, we expect that

Dq − (Dr
q ∪ Dirr

q ) 6= ∅.

Idea. Change the representation of the query q to retrieve more docu-
ments like those in Dr

q , exclude documents that are in Dirr
q , and not retreive

documents similar to them.
1Usually, those who originated the IR query.

1



Rocchio relevance feedback processing method.The query vectorq is replaced
with a new vectorqe which:

• Emphasizes the keywords found in documents fromDr
q .

• De-emphasizes the keywords found in documents fromDirr
q .

qe = α · q +
β

|Dr
q |

∑

dr∈Dr
q

dr −
γ

|Dirr
q |

∑

di∈Dirr
q

di.

Here,α, β andγ, often taken so thatα + β + γ = 1, represent respectively,the
importance of the original query, the importance of the positive informationand
the importance of the negative information.

Notes. Rocchio feedback processing introduces the potential ofnegative key-
word weights. A negative keyword weight in a query vector means thatthe lack of
that keyword in a document is important w.r.t. the relevancejudgement.

Additionally, if α + β + γ > 1, the absolute values of keyword weights will grow
(especially after a few iterations of the feedback method).

Variations. A number of variations onRocchio’s method.

• No negative feedback: (γ = 0)

qe = α · q +
β

|Dr
q |

∑

dr∈Dr
q

dr.

• Diminished negative feedback. Only use one vector fromDirr
q :

qe = α · q +
β

|Dr
q |

∑

dr∈Dr
q

dr − γ · dmax
irr ,

wheredmax
irr ∈ Dirr

q is the highest ranked irrelevant document.

Blind Relevance Feedback . Otherwise known aspseudo relevance feedback.
Let IR system retreive the setDq of documents given queryq. Assume that the
topk << |Dq| documents arerelevant and performRocchio’s feedback (w/o the
negative information) transformation ofq.

This is similar toboosting.

Use of Thesaurus

All methods discussed thus far will retrieve a document if itcontainsat least one
keyword (stem)specified in the query.

Thesauri help alleviate this issue.

2



Simple Thesaurus. A simple thesaurusis a collection of triples

(ti, tj , α),

whereti, tj ∈ V are two terms from the vocabulary andα ∈ (0, 1] is thedegree
of similarity.

If α = 1, ti andtj areexact synonyms. E.g. (”person”, ”human”, 1.00) means
that words”person” and”human” should be treated as full synonyms.

If α < 1, it means thatti andtj are similar, but their similarity does not rise to the
level of complete synonymity. E.g., we can have(”car”, ”Toyota”, 0.5) , because
we know that a”Toyota” is (typically) a car, but not every”car” is a Toyota.

Computing similarity. In the presence of a simple thesaurus, we need to com-
pute similarity between a document and a query in a differentway. Let T =
{(ti, tk, αik} be a simple thesaurus.

sim(dj , q) =

∑M
i=1 dij · qi +

∑

(ti,tk ,αik)∈T αik · dij · qk
√

∑M
i=1 d2

ij ·
∑M

i=1 q2
i

.

Note. We can treat a simple thesaurus as bothsymmetricandassymetric. If a
simple thesaurus issymmetric, then(ti, tk, α) ∈ T implies that(tk, ti, α) ∈ T . If
a simple thesaurus isassymetric, thenti, tk, α) ∈ T does not imply(tk, ti, α) ∈ T .
In this case it is possible that(tk, ti, α

′) ∈ T for someα′ 6= α, or that there is no
entry of the form(tk, ti, .) in T at all.

In all cases, the formula above will work.

Inverted Indexes and Postings Files

Without special preparations, each time a queryq is given to an IR system, the
system must compute and sort allsim(d1, q), sim(d2, q), . . . , sim(dn, q). When
n is very large, this is a costly operation.

Inverted Index is a data structure that allows for more efficient query processing.

A collection of document vectorsD = {d1, . . . , dn} can be thought of as a map-
ping from document Ids (d1, . . . , dn) to term idst1, . . . , tm.

An inverted index is a mapping fromterms to documentsthat contain them.

Simple Inverted Index is a list{〈ti, (di
1, . . . , d

i
ki

)〉}, whereti ∈ V is a vocabu-
lary term anddi

1, . . . , d
i
ki

areall documents inD that containti.

3



Example. Consider the following three documents:

d1 When I say stop, continue.

d2 When I say stop, stop and turn around.

d3 Around the bend, the river continued.

Assume for a moment that stopword removal removes”the” and ”and” and
that ”continued” stems to”continue” . Then, thesimple inverted index for this
document collection will be:

when d1, d2

I d1, d2

say d1, d2

stop d1, d2

continue d1, d3

turn d2

around d2, d3

bend d3

river d3

Search using Inverted Index. Let D be a document collection,V be its vocabu-
lary, andI be its inverted index. LetI(ti) denote the list of documents that contain
ti. Given a queryq, its evaluation can proceed as follows:

• Step 1: Listings.For each query termti present inq, retrieveI(ti).

• Step 2: Merge. Compute the intersection of all retrievedI(ti)s. (If nec-
essary, compute the union ofI(ti)s and sort it according to the number of
matching terms in each document).

• Step 3: Rank.For each documentdj from the list computed on Step 2 com-
putesim(dj , q). Sort all documents in the descending order of the similarity.

Inverted Indexes with Postings Files

An inverted index can be adapted to help deal with proximity queries.

Postings. A posting is a triple(ti, dj , k), which specifies that termti occurs in
documentdj in positionk. Position is usually defined as the word position (order)
in the document after stopword removal.

Inverted index with postings file: an inverted index where for each indexed
document we specify all locations of the term in it. More formally, an inverted
index with postings file is a collection of tuples of the form

〈ti, 〈d
i
1, (k11, . . . , k1s1

)〉, . . . , 〈di
li
, (kli1, . . . klisli

)〉〉.

Here,di
1, . . . , d

i
li

areall documents fromD which contain termti, andkrt are
all the locations in which the terms occur in their respective document.

4



Example. The inverted index with postings filefor the document collection

d1 When I say stop, continue.

d2 When I say stop, stop and turn around.

d3 Around the bend, the river continued.

will be:

when (d1, 1), (d2, 1)
I (d1, 2), (d2, 2)
say (d1, 3), (d2, 3)
stop (d1, 4), (d2, 4, 5)
continue (d1, 5), (d3, 4)
turn (d2, 6)
around (d27), (d3, 1)
bend (d3, 2)
river (d3, 3)

Proximity queries. Inverted indexes with postings filescan be used to answer
exact phrase queries and proximity queries.

Let D be a document collection,V be its vocabulary, andI be its inverted index
with postings. LetI(ti) denote the list of documents that containti andI(ti, dj)
denote the list of postings forti anddj . Given a queryq that represents the exact
phrase to be match (or a collection of keywords that need to befound in close
proximity), the search will proceed as follows.

• Step 1: Listings.For each query termti present inq, retrieveI(ti).

• Step 2: Merge.Compute the intersection of all retrievedI(ti)s.

• Step 3: Filter. For each documentdj in the list computed on Step 2, es-
tablish the proximity of keywords. If the proximity test fails, remove the
document from the list.

• Step 4: Rank.For each documentdj from the list computed on Step 3 com-
putesim(dj , q). Sort all documents in the descending order of the similarity.

5


