
. .
Cal Poly CSC 466 Knowledge Discovery in Data Alexander Dekhtyar
. .

Community Discovery

Communities

Community. Let S = {s1, . . . , sn} be a set of entities of the same type. A
community is a pair

C = 〈T,G〉,

where T , referred to as the community theme is the uniting property for
the community, and G ⊆ S is the set of community members.

Properties. This is a very general definition of communities. Different
algorithms use different specializations of this definition.

• Themes. Themes define communities. That is, we expect that if for
two communities C1 = 〈T1, G1〉 and C2 = 〈T2, G2〉, T1 = T2, then also
G1 = G2 and therefore C1 = C2.

(note that the inverse is not the case. It is quite possible for exactly
the same set of members to form two different communities, although,
in practice, distinguishing such communities may be hard.)

• Themes can be defined arbitrarily... Events, hobbies, concepts, etc. . .

• Individual entities may be members of multiple communities.

• In some applications, temporal aspect of communities is also important.

Community Discovery. Given a dataset containing (information about)
entities, discover (hidden) communities of the entities. For each community
discover the community theme and its members.

1

f1

f2

f3

f4

c1

c2

c3

c4

c5

F(ans) C(enters)

Figure 1: A (4,5) bipartite core.

Bipartite Core Communities

An (i, j) bipartite core is a complete bipartite graph G = 〈F,C,E〉,
such that:

• F,C ⊆ S

• F ∩ C = ∅,

• E = {(f, c)|f ∈ F, c ∈ C},

• (∀f ∈ F, c ∈ C)(f, c) ∈ E,

• |F | = i,

• |C| = j.

Elements of set F are referred to as fans, elements of set C are referred to
as centers.

Figure 1 shows a (4,5) bipartite core.

Why? Bipartite cores represent a group of entities (fans) that co-cites the
same set of entities (centers). One can view a bipartite core as a core of a
community that cosists of the fans, and whose theme can be found among
the centers.

2

Bipartite community discovery

Bipartite cores can be discovered using the following procedure:

Input: Graph GS = 〈S,ES〉, S = {s1, . . . , sn}, E ⊆ S × S. i, j - size of the
bipartite core.

Step 1. Pruning. Set S is pruned twice:

Step 1.1. Pruning by in-degree. Remove all pages with in-degree greater
than some large constant K. (e.g., K = 50).

Step 1.2. Iterative pruning of fans and centers. S0 = S. While Si 6=
Si−1:

• Prune from Si−1 all nodes s with out-degree do(s) < i.

• Prune from Si−1 all nodes s with in-degree di(s) < j.

Step 2. Bipartite Core generation. For k = 1 . . . k do:

• Recover (k, j) bipartite communities. (1, j) community consists
of a single node s with do(s) = j.

In general case,

– For each center of a k − 1, j community, consider any node
f ′ pointing to it, that is not part of the community. If f ′ is
connected to all j centers in the community, it is added to
the bipartite core.

Comments. Bipartite cores do not detect full communities, rather, they
detect ”central” portions of communities, and provide some direction for
theme discovery.

Maximum Flow Communities

Maximum Flow Communities. Let GS = 〈S,ES〉 be an interaction
graph over a set of entities S. A maximum flow community C ⊂ S is a
collection of entities such that

• For each u ∈ C , u has more edges (both in- and out-) connecting it
to other members of C than to members of S − C.

Idea. Recall the Maximum Flow problem on the graphs (See Figure 2
for the Ford-Fulkerson Algorithm). The line marked (!!!) is the key to the
algorithm: it uses the following property to compute flow:

The maximum flow going through an path between two nodes is
the flow of the edge with minimal capacity.

Consider a social network graph GS where the capacity of each edge
(u, v) ∈ ES is set to one (1). In such a graph, to find max flow between two

3

Algorithm FordFulkerson Input: Graph G with flow capacity c(u, v) a source node s

and a sink node t

Output: A flow f(u, v) from s to t which is a maximum possible flow.

begin
f(u, v) := 0 for all edges (u, v).
while there is a path p from s to t in Gf , such that cf (u, v) > 0 for all edges (u, v) ∈ p:

Find cf (p) = min{cf (u, v) | (u, v) ∈ p} (!!!)
for each edge (u, v) ∈ p

f(u, v) := f(u, v) + cf (p) (Send flow along the path)
f(v, u) := f(v, u) − cf (p) (The flow might be ”returned” later)

end for
end while end

Figure 2: Ford-Fulkerson Algroithm for maximum flow in newtworks.

w

t

s

u1
u2

u3 u4

u5

u6

Figure 3: Max-flow in social networks. Cuts separate communities

4

nodes s and t, one must find bottleneck nodes, i.e., nodes with the least
number of neighbors. See Figure 3 for an illustration.

The max-flow between nodes s and t on the graph is restrained by the
two bottleneck edges (u3, u4) and (u2, u5). Similarly, the max-flow between
s and w is restrained by the bottleneck edges (u1, u6) and (u2, u6). If these
edges are cut (removed from the network), we will have separated three
distinct communities.

Algorithm Find-Community. See Figure 4. The algorithm works as
follows.

• Input. Social network GS and a set of seed entities (pages) S∗. The
seed pages are known by the user of the algorithm to belong to the
same community. The algorithm will find the community boundaries.

• Output. C ⊃ S∗, the list of entities in the community.

• Process. The algorithm works in two steps:

– Step 1. Crawl. The algorithm crawls the social network starting
from the seed pages to collect the ”vicinity” of S∗.

– Step 2. Max-flow. Maximum flow algorithm is applied to separate
the community C ⊃ S∗ from the rest of the social network.

5

Algorithm Find-Community(S∗, K - number of iterations)

begin
C := S∗;
for it = 1 to K do

G := crawlGraph(C);
n := |S∗|;
C∗ := Max-Flow-Community(G,C,n);
rank all v ∈ C∗ by the number of edges to other members of C∗.
C := C ∪ {v ∈ C∗|v at the top of C∗}

end while return C;
end

Function Max-Flow-Community(G= (V,E), C, k)

begin
create vertices s, t, add them to V ;
for all v ∈ V do add (s, v) to E, with c(s, v) = ∞;
for all (u, v) ∈ E, u 6= s do;

c(u, v) = k;
if (v, u) 6∈ E then

add (v, u) to E with c(v, u) = k;
end for
for all v ∈ V , v 6∈ C ∪ {s, t} do add (v,t) to E with c(v, t) = 1
Max-Flow(G,s,t);

end

Figure 4: The algorithm for finding max-flow communities.

6

