Homework
Query Processing, part 2

The problems in this homework will use the following database (same as in the previous homework). Recall our abbreviations: the table names, T, C, P, G and S refer respectively to Teams, Coaches, Players, Games and Stats; Position is abbreviated as Pos and HomeTeam, HomeTeamScore, AwayTeam, AwayTeamScore — as HT, HTS, AT and ATS.

CREATE TABLE Teams (
 Id INT PRIMARY KEY,
 Name CHAR(30),
 Coach INT REFERENCES Coaches,
 Wins INT,
 Losses INT,
 Place INT
);

CREATE TABLE Coaches (
 Id INT PRIMARY KEY,
 Team INT REFERENCES Teams,
 Name CHAR(30)
);

CREATE TABLE Games (
 Id INT PRIMARY KEY,
 HomeTeam INT REFERENCES Teams,
 HomeTeamScore INT,
 AwayTeam INT REFERENCES Teams,
 AwayTeamScore INT
);

CREATE TABLE Players (
 Id INT PRIMARY KEY,
 Name CHAR(30),
 Position CHAR(2),
 Height INT, /* in inches */
 Team INT REFERENCES Teams
);

CREATE TABLE Stats (
 Player INT REFERENCES Players,
 Game INT REFERENCES Games,
 PTS INT, /* points scored */
 AST INT, /* assists */
 RB INT, /* rebounds */
 BLK INT, /* blocks */
 STL INT, /* steals */
 TO INT, /* turnovers */
 PF INT, /* personal fouls */
 TF INT, /* technical/flagrant fouls */
Consider the following table and column statistics:

<table>
<thead>
<tr>
<th>Teams</th>
<th>Coaches</th>
<th>Players</th>
<th>Games</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(T) = 32</td>
<td>T(C) = 32</td>
<td>T(P) = 512</td>
<td>T(G) = 1500</td>
<td>T(S) = 30,000</td>
</tr>
<tr>
<td>V(T,Id) = 32</td>
<td>V(C,.) = 32</td>
<td>V(P,Pos) = 5</td>
<td>V(G,HT) = V(G,AT) = 32</td>
<td>V(S,Player) = 512</td>
</tr>
<tr>
<td>V(T,Coach) = 32</td>
<td>V(P,Height) = 20</td>
<td>V(G,HTS) = V(G,ATS) = 50</td>
<td>V(S,Game) = 1500</td>
<td></td>
</tr>
<tr>
<td>V(T,Wins) = 90</td>
<td>V(P,Team) = 32</td>
<td>V(S,PTS) = 50</td>
<td>V(S,AST) = V(s,RS) = 20</td>
<td></td>
</tr>
<tr>
<td>V(T,Losses) = 90</td>
<td>V(G,HTS) = V(G,ATS) = 50</td>
<td>V(S,BLK) = V(S,STL) = 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(T,Name) = 32</td>
<td>V(G,HT) = V(G,AT) = 32</td>
<td>V(S,TO) = 10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(note: these statistics roughly reflect the NBA 32-team, ~12-players/team, 92-game season plus some play-off games. some other considerations: player height goes from 5'10” to 7'6” (20 values), game scores go from 70 to 120 - 50 different possibilities.)

Problem 1 Estimate the sizes of the results in terms of the number of tuples of the following operations (expressed either in relational algebra or in SQL). For operations represented as SQL, also provide the appropriate relational algebra translation (expression or tree).

Indicate, which specific estimation formulas you have used.

For joins, assume value sets containment and preservation of value sets, unless otherwise noted.

(note, $\rho_S(R)$ is a renaming operation, which is used in relational algebra expressions to disambiguates self-joins.)

1. $\sigma_{Position='PG'}(P)$;
2. $\sigma_{HTS>90\land ATS<80}(G)$;
3. $\sigma_{HT<2}(G)$;
4. $\sigma_{PTS>15}(S) - \sigma_{AST=5}(S)$;
5. $\sigma_{PTS>15}(S) \cap \sigma_{AST=5}(S)$;
6. $\sigma_{PTS>15}(S) \cup \sigma_{AST=5}(S)$;
7. $\rho_{P1}(P) \bowtie_{P1.Pos=P2.Pos} \rho_{P2}(P)$;
8. $\rho_{S1}(S) \bowtie_{S1.AST>S2.RB} \rho_{S2}(S)$;
9. $\rho_{S1}(S) \bowtie_{S1.AST>S2.RB\land S1.RB=S2.AST} \rho_{S2}(S)$;
10. $\sigma_{Game=150}(\rho_{S1}(S)) \bowtie_{S1.PF=S.PF} \sigma_{Player=150}(S)$;
11. $\gamma_{Pos,COUNT(*)}(P)$;
12. $\gamma_{\text{Player}, \text{SUM} (PTS)} (S)$;

13. $\gamma_{\text{BLK}, \text{COUNT} (*)} (S)$;

14. $\delta (\pi_{\text{PTS}, \text{AST}} (S))$;

15. $\delta (\pi_{\text{AST, RB}, \text{BLK}} (S))$;

16. `SELECT *
 FROM Players
 WHERE Position <> 'PG' AND Height > 78;

17. `SELECT *
 FROM Players P, Teams T, Coaches C
 WHERE P.Team = T.Id AND T.Coach = C.Id;

18. `SELECT *
 FROM Players P, Stats S
 WHERE P.Id = S.Player AND
 P.Position = 'PF' AND
 S.BLK = 10;

19. (pairs of players from different teams in the same game who scores same number of points. Note, that since you only need number of tuples, you can ignore the projection)

 SELECT P1.Name, P2.Name
 FROM Stats S1, Stats S2, Players P1, Players P2
 WHERE S1.Game = S2.Game AND
 P1.Id = S1.Player AND P2.Id = S2.Player AND
 P1.Team <> P2.Team AND
 S1.PTS = S2.PTS

20. `SELECT P.Height, P.Position, COUNT(*), SUM(PTS)
 FROM Players P, Stats S
 WHERE P.Id = S.Player
 GROUP BY P.Height, P.Position
 HAVING COUNT(*) > 10;

Problem 2 For each query below, consider the two logical query plans shown. Determine which query plan is better. Show all work (i.e., all cost computations). Propose a reasonable physical query plan for the better logical query plan, compute estimated I/O cost for it.\(^1\)

Feel free to restrict your computations to the number of tuples (i.e., ignore the effects of projection).

\(^1\)This problem combines together a number of questions. In the final exam some of these questions may be split, to exclude the chance/effects of "carryover errors".
1. SELECT P.Name, S.Game
 FROM Players P, Stats S, Teams T
 WHERE P.Id = S.Player AND P.Team = T.Id AND
 T.Name = 'Jazz' AND
 P.Position = 'PG' AND
 S.AST > 10;
2. SELECT S1.Player, S2.Player, G.ID
 FROM Games G, Stats S1, Stats S2
 WHERE S1.Game = G.Id AND
 S2.Game = G.Id AND
 S1.Player <> S2.Player AND
 S1.AST = S2.AST AND
 G.HomeTeamScore > G.AwayTeamScore;
3. (same query as in previous question)

SELECT S1.Player, S2.Player, G.ID
FROM Games G, Stats S1, Stats S2
WHERE S1.Game = G.Id AND
 S2.Game = G.Id AND
 S1.Player <> S2.Player AND
 S1.AST = S2.AST AND
 G.HomeTeamScore > G.AwayTeamScore;