Index Structures: Part 2

B+-trees

Just as simple index structures, B+trees are designed to index the content of existing database relations/data files in DBMS.

A B+-tree is a balanced tree data structure defined as follows:

- Each node in a B-tree consists of n key values and $n + 1$ pointers. Figure below shows the node structure for $n = 3$. For simplicity, we will write that a node N is a pair $(\text{Keys}[0..n], \text{Pointers}[0..n + 1])$.

<table>
<thead>
<tr>
<th>Keys:</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointers:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $B+$-trees have three types of nodes: root, internal and leaf.
- Leaf nodes are constructed as follows:
 - At least half of the key value slots in each leaf node is not empty.
 - Given a leaf node $l = (\text{Keys}[], \text{Pointers}[])$, if $l.\text{Keys}[i] = a$ (not empty) then $l.\text{Pointers}[i]$ contains a pointer to a record with key value a in the data file.
 - $l.\text{Keys}[i] \leq l.\text{Keys}[i + 1]$ for all non-empty slots.
 - The last pointer of the leaf node, $l.\text{Pointers}[n + 1]$ points to the next leaf node l'. If k is the number of non-empty key values in l, then $l.\text{Keys}[k] \leq l'.\text{Keys}[1]$.
The structure of leaf nodes is illustrated below.

- **Internal nodes** have the following structure:
 - Each internal node has at least half of its key value slots occupied.
 - Given an internal node \(N = (\text{Keys}, \text{Pointers}) \), if \(N.\text{Keys}[i] = a_i \) is non-empty, then \(N.\text{Pointers}[i] \neq \text{NULL} \) and points to a node in the next level of the \(B+ \)-tree. This node may be a leaf node, or another internal node.
 - If \(N.\text{Pointers}[i] = N' \), then for \(j \leq n \), if \(N'.\text{Keys}[j] \) is not empty, then \(N'.\text{Keys}[j] \leq N'.\text{Keys}[i] \).
 Additionally, if \(i > 1 \), \(N'.\text{Keys}[j] \geq N.\text{Keys}[i - 1] \).
 - If \(N.\text{Keys}[n] = a_n \) is not empty, then \(N.\text{Pointers}[n + 1] \neq \text{NULL} \) points to a node \(N' \) in the next level of the \(B+ \)-tree, and all nonempty keys \(N'.\text{Keys}[j] \geq N.\text{Keys}[n] \).

The structure of internal nodes is shown below:

- **Root node.** The structure of the root node of the \(B+ \)-tree is similar to the structure of the internal node, with the exception that root node may contain
fewer than half of its key value slots occupied. Instead, at least 2 pointers (and 1 key) in the root node must be non-empty.

A simple \(B^+\)-tree for \(n = 3\) is shown below:

![B+-tree diagram](image)

B+-trees and Indexing Database Records

\(B\)-trees, and \(B^+\)-trees are balanced trees with a guarantee that beyond the root node, all other nodes are rather dense (i.e., filled at 50% or more).

The search algorithm over \(B\)-trees and \(B^+\)-trees is straightforward:

- given a key value \(X\), starting at the root node, traverse the key values stored in the node, until a value \(Y > X\) is discovered at some slot \(i\).
- Retrieve the node \(Pointers[i]\).
- If all non-empty key values in the node are smaller than \(X\), follow the last non-empty pointer.

\(B^+\)-trees are an adaptation of the standard \(B\)-tree structure to the secondary storage. Each node of a \(B^+\)-tree has the size of one disk block. The data portion of the disk block is broken into \(n\) \((Key, Pointer)\) pairs, and an additional, \(n + 1\)st pointer is stored at the end of the page.

The second distinction of \(B^+\)-trees is the fact that all leaf nodes are linked with each other. This makes it easy to search for keys in a sequence: searching for a starting position is done by traversing the tree, but after the first leaf node is
retrieved, one can follow the \(n + 1 \)st pointer on the page, to retrieve the next leaf node.

Note: we also note that while the standard structure of a \(B^+ \)-tree assumes only a single-linked list of leaf nodes, we can also store a pointer to previous leaf node in the block header of each leaf node page.

\(B^+ \)-trees can be used to store any of the index structures discussed before:

- **Dense indexes** on sequential files. The leaf nodes form the dense index, while the upper layers provide fast navigation to the necessary key.
- **Sparse indexes** on sequential files. Same as above, leaf nodes form the sparse index.
- **Secondary indexes.** Leaf nodes present all key occurrences in sorted order.
- **Indexes with duplicate keys.** \(B^+ \)-trees need to be slightly updated to allow for seamless indexing of data with duplicate keys. In particular, the meaning of a key in an internal node has to change somewhat.

How many layers?

Suppose our disk blocks contain 4Kb each, 4096 bytes. Let our key values be integers, 4 bytes long and let our pointers be 8 bytes in size.

How many key values can we store in a single node?

We know that \(12n + 8 + HeaderSize \leq 4096 \). If we take \(HeaderSize \) to be 80 bytes, this would lead to \(12n = 4008 \), or

\[
 n = 334.
\]

A one-level \(B^+ \)-tree (root and leaves) can thus index \(334^2 = 111,556 \) records. A two-level \(B^+ \)-tree (root, internal layer and leaves) can index \(334^3 = 37,259,704 \) records.