bal Poly CSC 468: DBMS Implementation

Alexander Dekhtyar'

Query Execution

Nested L oop Algorithms

Il. Nested loop algorithms.

e Join

Nested-L oop joins

One-pass join algorithm can only be used if one of the theiogiais small enough
to fit in main memory.

If both relations are large, then, one pass will not be enolttgwever, we can
devise algorithms that read one of the two relations onlyeonthis family of
algorithms is calledNested-Loop algorithms.

Tuple-based Nested-L oop Join
Assume we are computing natural jd X, Y") x S(Y, Z). Tuple-based nested-

loop join accesses relations in a tuple by tuple fashion, and for eaicloptuples
checks if the join condition holds. It can be representedbgws:

Al gorithm Tupl eJoi n(R, S)
for each s in S do
for eachr in R do
if (s.Y==r.Y) output (r.Xr.Y,s.2);

end Al gorithm

We can build iterators based on tuple-based join.

Al gorithm OQpen(R, S)

Open(S);

Open(R);

s: = GetNext(s); [// set the first tuple fromsS
end Al gorithm

Al gorithm Get Next (R, S)

do
r.= Get Next (R);
i f (NOT found) /1 if Ris at the end, advance the tuple in S
{ dose(R;
s:= GetNext (S);
if (NOT found) return; // if at the end of S, return
pen(R); /1l restart Rfor the newtuple fromsS

while (s.Y!=r1.Y);
return (r.X, r.Y, s.2Z); // return the next joined tuple

end Al gorithm

Al gorithm C ose(R, S)
G ose(R);
C ose(S);

end Al gorithm

Block Nested-L oop Join

Tuple-based nested-loop join “pretends” to load tuplestmnene into main mem-
ory. Ifitis allowed to proceed this way, its costG§7'(R) - T'(.S) — very high.

Block Nested-Loop Join reads data in blocks to fill as much main memory as
possible. This allows for computations of large portionghaf final join without
any extra I1/0 manipulation.

Let us assume thd@(R) > B(S) > M, i.e., neitherR nor S fits main memory.
Theblock nested-loop join approach is as follows:

e Breaks into “chunks” of sizeM — 1 eacH.
e organize the algorithm as a nested loop.
e The outter loop loads the next chunk fra#rinto main memory.

e The inner loop scan® and joins tuples froni with tuples fromsS.

The last chunk may have a smaller size.

The pseudocode for this algorithm is below.

Al gori thm Bl ockNest edLoopJoi n(R, S)

NumChunks := (B(S) div (M1)) + 1;

for i =1 to NunChunks do

/1 conpute the nunber of chunks

read M1 blocks of Sinto buffer;
i ndex these bl ocks on S.Y;

for j =1to B(R do

read block Block j fromR;
for each tuple r in Block_j
for each tuple s in main nmenory,

out put (r.X

end for;
end for;

end Al gorithm

r.vY, s.2);

do

S.

Il
Il

11

t.

S.

| oad next chunk of S

i ndex

it

read next block fromR

Evaluation
Algorithm Tupl eJoi n \ Bl ockNest edLoopsJoin
Constraints NONE!
B(S)-B(R
/O Cost T(R)-T(S) | O (%)
Memory Footprint | O(1) M

r.Y do

Notes. For the tuple nested-loop join, we provide the worst-casienate. For

the block nested-loop join, the actual estimate of I/O csf(S) + Z5)BUE)

This formula explains why the smaller relation should behmdutter 1oop.

/1 use indexing to find
/1 these tuples

