
. .
Spring 2008 CSC 468: DBMS Implementation Alexander Dekhtyar
. .

Tuning Oracle Query Execution Performance

The performance of SQL queries in Oracle can be modified in a number of ways:

• By selecting a specificquery optimization approach and goal.

• By creating and maintainingindexes on database tables.

• By collecting and maintainingdatabase statistics.

• By providing expilictquery execution hints to the query compiler.

Selection of Optimier approach and goal

Oracle has two built in optimizers:

• Cost-Based Optimizer (CBO);

• Rule-Based Optimizer (RBO).

Oracle can optimize queries for two differentgoals:

• throughput: the total amount of resources (I/O, memory, processor time) to
processall rows accessed by the SQL statement;

• response time: the amount of resources (I/O, memory, processor time) to
process the first row accessed by the SQL statement.

Optmizing for throughput spends the least amount of resources on computing the
answer to the entire query. Convenient when queries are processed off-line.

Optimizing for response time spend the least amount of resources before commenc-
ing the output (but may take longer to produce the entire answer). Convenient when
queries are processed on-line.

1

You can select the appropriate optimizer and optimizer behavior (goal) using
theALTER SESSION command. Oracle stores current choice of optimizer and
optimizer goal in a parameterOPTIMIZER MODE. To set new optimizer behavior,
issue the following SQL command:

ALTER SESSION SET OPTIMIZER_MODE = <Value>;

The following values for theOPTIMIZER MODE parameter are accepted.

Value Optmizer Goal Comment
CHOOSE selected by Oracle throughput default value. Lets Oracle select which optimizer to choose
ALL ROWS CBO throughput forces the use ofCBO, optimizes for throughput
FIRST ROWS n CBO response time forces the use ofCBO, optimizes for response time for firstn rows
FIRST ROWS CBO andRBO response time directs Oracle to minimize response time by any means necessary
RULE RBO N/A forces the use ofRBO

Behavior ofCHOOSE:

• If statistics for at least one access table exist, usesCBO.

• If no statistics exist, usesRBO.

Choosing optimizer mode for a single query. UsingOracle hints it is possible
to override Oracle’s optimizer mode for a single query in a session. The following
list of hints is available:

OPTIMIZER MODE value hint
CHOOSE CHOOSE
ALL ROWS ALL ROWS
FIRST ROWS n FIRST ROWS(n)
FIRST ROWS FIRST ROWS
RULE RULE

Note: See more onhints in sections below.

Indexes in Oracle

Oracleautomatically createsindexes on all

• Primary keys of relations;

• keys identified byUNIQUE constraints inCREATE TABLE statements.

Database developers can create additional indexes manually usingCREATE INDEX
command.

CREATE INDEX command. The syntax ofCREATE INDEX command is as
follows 1:

CREATE [UNIQUE] INDEX <IndexName>
ON <TableName> [<Alias>] (<Columns>)

1This is somewhat simplified syntax

2

Here:

• UNIQUE specifies that index keys must be unique.

• <IndexName> is the name of the index.

• <TableName> is the name of the table which is indexed (you can alias it if
needed).

• <Columns> is the list of columns which are being indexed.

Example. The following SQL commands create a table, and create two indexes
on it.

CREATE TABLE Items (
Receipt INT,
Item INT,
Quantity INT,
PRIMARY KEY(Receipt, Item)

);

CREATE INDEX IDX_ITEM
ON Items(Item);

CREATE INDEX IDX_RECEIPT
ON Items(Receipt);

Deleting indexes. To delete indexes useDROP INDEX command:

DROP INDEX <Name>;

Checking existing indexes on your tables. Oracle usesUSER INDEXES table
to store information about indexes on the tables in user’s database. You can view
all attributes ofUSER INDEXES using SQL*Plus command

describe USER_INDEXES

To view indexes with the tables they refer to issue the following query:

SELECT index_name, table_name FROM USER_INDEXES;

Optimizer Statistics and their collection and maintenance

Oracle optimizer collects the following information (statistics) about the relational
tables in its tablespace.

• Table Statistics (for each table)

– Number of rows (T (R))

3

– Number of blocks (B(R))

– Average row length2

• Column statistics (for individual columns of the tables)

– Number of distinct values (NDV) (V (R,A))

– Number of nulls in column

– Histogram (of data distribution by value)

• Index statistics (for each index)

– Number of leaf blocks (Oracle uses B+trees)

– Number of levels

– Clustering factor3

• System statistics

– I/O performance and utilization

– CPU performance and utilization

Gathering Statistics. Oracle 10 (and up) automatically gathers statistics on all
database objects using a background job (GATHER STATS JOB). Typically, this
job is run every day at night (at the beginning of the maintenance window for the
system).

Manual Statistics Gathering. It is possible to ”force” Oracle to collect statistics
upon user request. Oracle provides a PL/SQL packageDBMS STATS which con-
tains a number of stored procedures that collect statistics. The two procedures of
interest areGATHER INDEX STATS, which gathers index statistics for a given
database index, andGATHER TABLE STATS, which gathers table and column
statistics for individual tables4.

GATHER INDEX STATS. This procedure gathers statistics for a specified in-
dex file. It has two required parameters:ownname (index owner/schema) and
indname (index name), and a number of optional parameters that guidethe be-
havior of the procedure and allow to retrieve gathered statistics. The full list is
below:

2For fixed-length records, this will be simply row length, or record size. For variable-length
records, the average will be applied.

3A relation isclustered if all records with the same value of an index key are located in as few
blocks as possible. It usnot clustered if records with the same value of an index key are located on
as many blocks as possible. Clustering factor essentially quantifies the degree to which the relational
table is clustered w.r.t., specific index.

4OtherGATHER ... STATS procedures exist, but they gather statistics at a much higher granu-
larity level.

4

Parameter name meaning
ownname schema of index
indname name of index
partname name of partition (we do not use partitions)
estimate percent percentage of rows to estimate. Default:NULL means compute.

range of values:[0.000001, 100].
stattab name of table in which to store the statistics
statown schema ofstattab (default:ownname
degree degree of paralellism, i.e., how many parallel processes touse.

default:NULL (i.e., serial execution).
granularity granularity of statistics to be gathered. See table below.
no invalidate do not invalidate dependent cursors if set toTRUE

(the default behavior is to invalidate them)
force gather statistics even the object (index) is locked

Values of thegranularity parameter (we should not be worried too much
about these values, default, ’ALL’ or ’AUTO’ will work):

value meaning
’ALL’ gather all statistics
’AUTO’ default value: Oracle determines the granularity
’GLOBAL’ gathers global statistics
’GLOBAL AND PARTITION’ gathers global and partition, but not sub-partition statistics
’PARTITION’ gathers partition-level statistics
’SUBPARTITION’ gathers sub-partition-level statistics

The most simple way of invoking the index statistics gathering is (assuming the
owner of the schema is’alex’:

DBMS_STATS.GATHER_INDEX_STATS(ownname=>’alex’,
indname=>’IDX_ITEM’);

You can create a simple script:

BEGIN
DBMS_STATS.GATHER_INDEX_STATS(ownname=>’alex’,

indname=>’IDX_ITEM’);
END
/

and run it fromsql*plus command line. (note the syntax for parameter passing).

GATHER TABLE STATS. This stored procedure has two mandatory param-
eters: ownname and tabname, name of the table, and a number of optional
paramters that guide its behavior. Statistics are gatheredfor the specified table.
The full paramter list is:

5

Parameter name meaning
ownname schema of table
tabname name of table
partname name of partition (we do not use partitions)
estimate percent percentage of rows to estimate. Default:NULL means compute.

range of values:[0.000001, 100].
block sample If set toTRUE, use random block sampling

if set toFALSE (default), use random row sampling
method opt specifies ”accents” (see table below)
degree degree of paralellism, i.e., how many parallel processes touse.

default:NULL (i.e., serial execution).
granularity granularity of statistics to be gathered. See table forGATHER INDEX STATS.
cascade if set to’TRUE’ triggers gathering index statistics on the table
stattab name of table in which to store the statistics
statid identifier (optional) to associate with statistics in the stats table
statown schema ofstattab (default:ownname
no invalidate do not invalidate dependent cursors if set toTRUE

(the default behavior is to invalidate them)
force gather statistics even the object (index) is locked

method opt parameters accepts the following values:

• FOR ALL [INDEXED| HIDDEN] COLUMN [<sizeClause>]

• FOR COLUMNS [<sizeClause>] <columnName>|<attribute>
[<sizeClause>], (<columnName>|<attribute> [<sizeClause>])*

<sizeClause> controls how big a histogram will be produced. Its format is
SIZE (<number>|REPEAT|AUTO|SKEWONLY). Here:

value meaning
<number> number of histogram buckets (1. . . 254)
REPEAT collect histograms only if a column already has a histogram
AUTO Let Oracle determine which histograms to collect based on data distribution and worlkload
’SKEWONLY’ Oracle determines which histograms to collect based the data distribution

Here is an example of a statistics gathering command:

DBMS_STATS.GATHER_TABLE_STATS(ownname => ’alex’,
tabname => ’ITEMS’,
method_opt => ’FOR ALL COLUMNS SIZE 20’,
cascade => ’TRUE’,
stattab => ’alexStats’,
statid => ’item01’);

This call asks Oracle to gather statistics for all columns ofalex.ITEMS table,
collect column statistics in the form of the 20-bucket histograms for all columns
of the table, collect index statistics for all indexes of thetable and put all collected
statistics into thealexStats table underitem01 tag.

Index statistics table. You can create your own table for storing index statistics
using theCREATE STAT TABLE stored procedure from theDBMS STATS pack-
age. The procedure takes two mandatory parameters,ownname andstatttab,
the name of schema and the name of the table respectively.

For example, to create stats table use the following script:

6

BEGIN
DBMS_STATS.CREATE_STAT_TABLE(’alex’, ’alexStats’);

END
/

or, directly fromsql*plus type:

EXEC DBMS_STATS.CREATE_STAT_TABLE(’alex’, ’alexStats’);

You can useDBMS STATS.DROP STAT TABLE(ownname, stattab) com-
mand to drop the stats table.

Optimizer Hints

To improve/alter behavior of the Oracle query processor on specific queries we use
optimizer hints.

Optimizer hints syntax and use. Optimizer hints are applicable to the following
four SQL commands:

• SELECT

• DELETE

• UPDATE

• INSERT

Optimizer hints are inserted directly into the query in the form of a special com-
ment that immediately follows theINSERT|DELETE|UPDATE|SELECT key-
word. The syntax of the hints is:

(INSERT|DELETE|UPDATE|SELECT) /*+ hint [text] [hint [text]]* */ ...

or

(INSERT|DELETE|UPDATE|SELECT) --+ hint [text] [hint [text]]*
...

Here,

• "+" is a signal to Oracle to look for optimizer hints in the comment. There
should be no whitespace between the comment start ("/*" or "--" and
"+".

• hint entries represent the actual optimizer hints.

• text entries represent any other texts that is treated as regularcomments.

7

Example. Here is an example of an optimizer hint, which invokes a rule-based
optimizer for the query.

SELECT /*+ RULE */ *
FROM Goods g, Items i
WHERE g.id = i.item and g.price < 7;

Types of optimizer hints. Oracle supports the following types of optimizer hints:

• Hints for optimization approach and goal. (See ”Selection of Optimizer
approach and goal” section). These hints override the session optimizer be-
havior to process current query using a different appraoch/goal.

• Hints for access paths. These hints specify how Oracle will access data
from database tables.

• Hints for query transformations. These hints guide the work of the query
rewriter by allowing/disallowing certain query transformations.

• Hints for join orders. These hints determine in which order multiple tables
are joined.

• Hints for join operations. These hints specify which join algorithm to use
for specific joins in the query.

• Additional hints. These mostly deal with operation-specific issues (e.g.,
hints, specific toINSERT operation).

Hints for optimization approach and goal. These hints,ALL ROWS, FIRST ROWS(n),
CHOOSE, RULE are described above.

Hints for access paths. An access path is the method of access to/retrieval of
the data from database tables. Oracle supports multiple access paths to relational
tables, and provides a hint for each of them:

Hint syntax Access path Comment
FULL(<TableName>) Full scan selects full table scan to access<TableName>
ROWID(<TableName>) Rowid scan typically used for small outputs
INDEX(<TableName> <Index> <Index>*) Index scan use index(es) to access the table
INDEX ASC(<TableName> <Index> <Index>*) Index scan explicitly tells to scan index(es) in ascending order
INDEX DESC(<TableName> <Index> <Index>*) Index scan explicitly tells to scan index(es) in descendingorder
INDEX JOIN(<TableName> <Index> <Index>*) Index scan use join of indexes to access table
INDEX FFS(<TableName> <Index> <Index>*) Fast index scan use fast full index scan
NO INDEX(<TableName> <Index>*) prohibits the use of specified indexes.

Notes: The default behavior ofINDEX andINDEX ASC are the same. If no
indexes are specified inNO INDEX hint, Oracle essentially is forced to do a full
table scan.Fast Full Index Scan

Hints for query transformations. The following hints for query transformations
are used in Oracle:

8

Hint syntax Explanation
USE CONCAT forcesOR condidtions inWHERE clauses

to be transformed intoUNION ALL operations
NO EXPAND preventsCBO from consideringOR-expansion of

IN-lists
EXPAND GSET TO UNION transform grouping queries to unions usingUNION ALL
MERGE(<Name>) allows optimizer to merge the view’s query (nested query) into accessing statement
NO MERGE[(<Name>)] disallows merging view’s query (nested query) into accessing statement
STAR TRANSFORMATION select the best plan that uses thestar transformation
FACT(<TableName> specifies the ”fact” table for thestar transformation
NO FACT(<TableName> specifies that the table isnot the ”fact table” in the

star transformation

Note: OR-expansion ofIN-lists replaces the<Attribute> IN <Query>
expression with anOR of <Attribute> = <Value> for each<Value> re-
turned by<Query>.

Note: Thestar transformation applies to a situation where multiple (typically,
small) tables are joined with a single (very) large table, i.e., when one, large, table
is found in all join conditions in a query. The transformation adds subqueries to
the join query, which may potentially allow for index-basedaccess path to be more
efficient than a full table scan for the large table. It is calledstar transformation
because a typcial example of its use comes from data warehouses employing the
so-calledstar schema, i.e., a database schema with one very large ”fact table”
and many small ”dimension tables” connected to the fact table via foreign keys.

Hints for join orders. Oracle has two hints to control join order:

Hint syntax Explanation
ORDERED join tables in the order in which they appear in theFROM clause
STAR join the largest table last (using nested loops join)

Hints for join operations. Oracle has three main methods for joining tables:
nested loops join, sort-based join andhash-based join.

Hint syntax Explanation
USE NL(<Table> <Table>*) usenested loops join to join all mentioned tables
USE MERGE(<Table> <Table>*) usesort-based join to join all mentioned tables
USE HASH(<Table> <Table>*) usehash-based join to join all mentioned tables
LEADING(<Table>) specifies the first table in join order
HASH AJ, MERGE AJ, NL AJ specifies the type of join operation in theNOT IN subqueries
HASH SJ, MERGE SJ, NL SJ specifies the type of join operation in theEXISTS subqueries

Note: Only oneLEADING table may be specified.ORDERED hint takes prece-
dence overLEADING hint.

Plan Explanation

Oracle allows users to review query plans for anySELECT, DELETE, UPDATE or
INSERT statement. The SQL command for producing a plan isEXPLAIN PLAN,
and is syntax is as follows:

EXPLAIN PLAN [INTO <TableName>] FOR <SQLStatement>;

9

Here,<TableName> is the name of the table into which the plan details are
stored. If table name is not included, Oracle stores the planin the table called
plan table.

The schema ofplan table can be discovered viaDESCRIBE command:

SQL> describe plan_table
Name Null? Type

------------------ -------- ----------------------------
STATEMENT_ID VARCHAR2(30)
PLAN_ID NUMBER
TIMESTAMP DATE
REMARKS VARCHAR2(4000)
OPERATION VARCHAR2(30)
OPTIONS VARCHAR2(255)
OBJECT_NODE VARCHAR2(128)
OBJECT_OWNER VARCHAR2(30)
OBJECT_NAME VARCHAR2(30)
OBJECT_ALIAS VARCHAR2(65)
OBJECT_INSTANCE NUMBER(38)
OBJECT_TYPE VARCHAR2(30)
OPTIMIZER VARCHAR2(255)
SEARCH_COLUMNS NUMBER
ID NUMBER(38)
PARENT_ID NUMBER(38)
DEPTH NUMBER(38)
POSITION NUMBER(38)
COST NUMBER(38)
CARDINALITY NUMBER(38)
BYTES NUMBER(38)
OTHER_TAG VARCHAR2(255)
PARTITION_START VARCHAR2(255)
PARTITION_STOP VARCHAR2(255)
PARTITION_ID NUMBER(38)
OTHER LONG
OTHER_XML CLOB
DISTRIBUTION VARCHAR2(30)
CPU_COST NUMBER(38)
IO_COST NUMBER(38)
TEMP_SPACE NUMBER(38)
ACCESS_PREDICATES VARCHAR2(4000)
FILTER_PREDICATES VARCHAR2(4000)
PROJECTION VARCHAR2(4000)
TIME NUMBER(38)
QBLOCK_NAME VARCHAR2(30)

Of these, the following columns are of specific interest:

Column Explanation
OPERATION Operation being performed (see list below)
OPTIONS modifications/options of the operation
OBJECT NAME table (or other object) on which the operation is performed
ID id of the oepration in the plan
PARENT ID pointer to the parent (in the query plan) of the operation

Possible values of theOPERATION attribute are:

DELETE STATEMENT AND-EQUAL DOMAIN INDEX HASH JOIN
INSERT STATEMENT CONNECT BY FILTER MERGE JOIN

10

SELECT STATEMENT CONCATENATION FIRST ROW NESTED LOOPS
UPDATE STATEMENT COUNT FOR UPDATE UNION
INLIST ITERATOR INDEX PARTITION INTERSECTION
TABLE ACCESS REMOTE SEQUENCE MINUS

SORT VIEW

To view the plan from theplan table, run the following command:

select
substr (lpad(’ ’, level-1) || operation || ’ (’ || options || ’)’,1,30) "Operation",
object_name "Object"

from
plan_table

start with id = 0
connect by prior id=parent_id;

For example,

SQL> explain plan for
2 select receipt, food, flavor, price
3 from goods g, items i
4 where i.item = g.gid and price < 5;

Explained.

SQL> select
substr (lpad(’ ’, level-1) || operation || ’ (’ || options || ’)’,1,30) "Operation",
object_name "Object" 2

from
plan_table

start with id = 0
connect by prior id=parent_id;

Operation Object
------------------------------ ------------------------------
SELECT STATEMENT ()
MERGE JOIN ()
TABLE ACCESS (BY INDEX ROWID GOODS
INDEX (FULL SCAN) SYS_C0027499

SORT (JOIN)
TABLE ACCESS (FULL) ITEMS

6 rows selected.

SQL> explain plan for
2 select /*+ rule */ receipt, food, flavor, price
3 from goods g, items i
4 where i.item = g.gid and price < 5;

Explained.

SQL> select
substr (lpad(’ ’, level-1) || operation || ’ (’ || options || ’)’,1,30) "Operation",
object_name " 2 Object"

from
plan_table

start with id = 0
connect by prior id= 3 parent_id;

4 5 6 7
Operation Object

11

------------------------------ ------------------------------
SELECT STATEMENT ()
NESTED LOOPS ()
TABLE ACCESS (FULL) ITEMS
TABLE ACCESS (BY INDEX ROWID GOODS
INDEX (UNIQUE SCAN) SYS_C0027499

Timing

sql*plus has aset timing on andset timing off pair of commands that
allow users to collect information about the running time ofthe queries.

SQL> select count(*)
from goods g, items i, receipts r, customers c

where i.item = g.gid and
g.price < 5 and
c.cid = r.customer and
i.r 2 eceipt = r.rnumber;

3 4 5 6
COUNT(*)

464

Elapsed: 00:00:00.03

12

