Spring 2008 CSC 468: DBMS Implementation

Alexander Dekhtyar'

Tuning Oracle Query Execution Performance
The performance of SQL queries in Oracle can be modified imabeu of ways:

e By selecting a specifiquery optimization approach and goal.
e By creating and maintaininigpdexes on database tables.
e By collecting and maintainingatabase statistics.

e By providing expilictquery execution hints to the query compiler.

Selection of Optimier approach and goal
Oracle has two built in optimizers:

e Cost-Based Optimizer (CBO);
e Rule-Based Optimizer (RBO).

Oracle can optimize queries for two differeguals:

e throughput: the total amount of resources (I/O, memory, processor)time
processll rows accessed by the SQL statement;

e response time: the amount of resources (I/O, memory, processor time) to
process the first row accessed by the SQL statement.

Optmizing for throughput spends the least amount of resources on computing the
answer to the entire query. Convenient when queries aregsed off-line.

Optimizing for response time spend the least amount of resources before commenc-
ing the output (but may take longer to produce the entire answonvenient when
gueries are processed on-line.

You can select the appropriate optimizer and optimizer Wehggoal) using
the ALTER SESSI ON command. Oracle stores current choice of optimizer and
optimizer goal in a paramet@PTI M ZER MODE. To set new optimizer behavior,
issue the following SQL command:

ALTER SESSI ON SET OPTI M ZER_MODE = <Val ue>;

The following values for th€@PTI M ZER MODE parameter are accepted.

Val ue Optmizer Goal Comment

CHOGCSE selected by Oracle throughput default value. Lets Oracle select which optimizer to choose
ALL_RONS CBO throughput forces the use dEBO, optimizes for throughput

FI RST.ROAMS.n CBO response time forces the use ocEBO, optimizes for response time for firstrows
FI RST_RONS CBO andRBO response time directs Oracle to minimize response time by any means nagess
RULE RBO N/A forces the use oRBO

Behavior of CHOOSE:

o [f statistics for at least one access table exist, @GR

e If no statistics exist, usd3BO.

Choosing optimizer mode for a single query. UsingOracle hints it is possible
to override Oracle’s optimizer mode for a single query inssgm. The following
list of hints is available:

OPTI M ZER MODE value hint

CHOGOSE CHOGSE
ALL_RONS ALL_ROWG

FI RST_ROAB.Nn FI RST_ROWS(n)
FI RST_RONG FI RST_RO\S
RULE RULE

Note: See more omints in sections below.

Indexes in Oracle

Oracleautomatically createsindexes on all

e Primary keys of relations;

e keys identified byJNI QUE constraints irCREATE TABLE statements.

Database developers can create additional indexes mansaltyCREATE | NDEX
command.

CREATE INDEX command. The syntax ofCREATE | NDEX command is as
follows *:

CREATE [UNI QUE] | NDEX <I ndexNane>
ON <Tabl eNane> [<Alias>] (<Col umms>)

1This is somewhat simplified syntax

Here:

e UNI QUE specifies that index keys must be unique.
e <| ndexNane> is the name of the index.

e <Tabl eNane>is the name of the table which is indexed (you can alias it if
needed).

e <Col umms>is the list of columns which are being indexed.

Example. The following SQL commands create a table, and create twexesl
on it.

CREATE TABLE Itens (

Recei pt | NT,

ltem | NT,

Quantity | NT,

PRI MARY KEY(Recei pt, Item
);

CREATE | NDEX | DX_| TEM
ON Itens(lten);

CREATE | NDEX | DX_RECEI PT
ON Itens(Receipt);

Deleting indexes. To delete indexes udeROP | NDEX command:

DROP | NDEX <Nane>;

Checking existing indexes on your tables. Oracle use$JSER_| NDEXES table
to store information about indexes on the tables in usetaldge. You can view
all attributes ofUSER_I NDEXES using SQL*Plus command

descri be USER | NDEXES

To view indexes with the tables they refer to issue the fathgagquery:

SELECT i ndex_nane, table name FROM USER | NDEXES;

Optimizer Statistics and their collection and maintenance

Oracle optimizer collects the following information (ssdits) about the relational
tables in its tablespace.

e Table Statistics (for each table)

— Number of rows T'(R))

— Number of blocks B(R))
— Average row length

e Column statistics (for individual columns of the tables)

— Number of distinct values (NDV) (R, A))
— Number of nulls in column
— Histogram (of data distribution by value)

e Index statistics (for each index)

— Number of leaf blocks (Oracle uses B+trees)
— Number of levels
— Clustering factoP

e System statistics

— 1/O performance and utilization
— CPU performance and utilization

Gathering Statistics. Oracle 10 (and up) automatically gathers statistics on all
database objects using a background GATHER STATS_JOB). Typically, this

job is run every day at night (at the beginning of the mainteeawindow for the
system).

Manual Statistics Gathering. Itis possible to "force” Oracle to collect statistics
upon user request. Oracle provides a PL/SQL packiMs STATS which con-
tains a number of stored procedures that collect statistibg two procedures of
interest areGATHER | NDEX_STATS, which gathers index statistics for a given
database index, anGATHER TABLE_STATS, which gathers table and column
statistics for individual tablés

GATHER _INDEX _STATS. This procedure gathers statistics for a specified in-
dex file. It has two required parameterswnnane (index owner/schema) and

i ndname (index name), and a number of optional parameters that gh&lbe-
havior of the procedure and allow to retrieve gatheredstiesi The full list is
below:

2For fixed-length records, this will be simply row length, ecord size. For variable-length
records, the average will be applied.

3A relation isclustered if all records with the same value of an index key are locatedsi few
blocks as possible. It usot clustered if records with the same value of an index key are located on
as many blocks as possible. Clustering factor essentialiytifies the degree to which the relational
table is clustered w.r.t., specific index.

40therGATHER.. . . _STATS procedures exist, but they gather statistics at a much higrheu-
larity level.

Parameter name meaning

ownname schema of index
i ndname name of index
part name name of partition (we do not use partitions)

estimat e_percent percentage of rows to estimate. DefalluLL means compute.
range of valuesf0.000001, 100].

stattab name of table in which to store the statistics

st at own schema oft at t ab (default: ownnane

degree degree of paralellism, i.e., how many parallel processes¢o
default: NULL (i.e., serial execution).

granul arity granularity of statistics to be gathered. See table below.

no.i nval i date do not invalidate dependent cursors if seTRUE
(the default behavior is to invalidate them)

force gather statistics even the object (index) is locked

Values of thegr anul ari ty parameter (we should not be worried too much
about these values, default, 'ALL’ or ’"AUTO’ will work):

value meaning

"ALL’ gather all statistics

" AUTO default value: Oracle determines the granularity

" GLOBAL’ gathers global statistics

" GLOBAL AND PARTI TI ON' gathers global and partition, but not sub-partition stiats
" PARTI TI ON gathers partition-level statistics

" SUBPARTI TI ON' gathers sub-partition-level statistics

The most simple way of invoking the index statistics gathgis (assuming the
owner of the schema isal ex’ :

DBMS_STATS. GATHER | NDEX_STATS(ownnane=>" al ex’ ,
i ndnane=>" | DX_I TEM) ;

You can create a simple script:

BEG N
DBMS_STATS. GATHER | NDEX_STATS(ownnane=>" al ex’ ,
i ndnarme=>" | DX\ _| TEM) ;
END
/

and run it fromsgl*plus command line. (note the syntax for parameter passing).

GATHER _TABLE _STATS. This stored procedure has two mandatory param-
eters: ownnane andt abnane, name of the table, and a number of optional
paramters that guide its behavior. Statistics are gathiemethe specified table.
The full paramter list is:

Parameter name

meaning

ownname schema of table
t abname name of table
part name name of partition (we do not use partitions)

esti mat e_per cent

percentage of rows to estimate. DefalNULL means compute.
range of valuesf0.000001, 100].

bl ock_sanpl e If set to TRUE, use random block sampling
if set toFAL SE (default), use random row sampling
met hod_opt specifies "accents” (see table below)
degree degree of paralellism, i.e., how many parallel processes¢o

granul arity

default: NULL (i.e., serial execution).
granularity of statistics to be gathered. See table®FHER | NDEX_STATS.

cascade if setto’ TRUE' triggers gathering index statistics on the table
stattab name of table in which to store the statistics

statid identifier (optional) to associate with statistics in thetstable

st at own schema oft at t ab (default: ownnane

no_i nval i dat e

force

do not invalidate dependent cursors if seTRUE
(the default behavior is to invalidate them)
gather statistics even the object (index) is locked

net hod_opt parameters accepts the following values:

e FOR ALL [| NDEXED)

Hl DDEN] COLUMWN [<si zeCl ause>]

e FOR COLUMWNS [<si zeC ause>] <col utmName>| <attri bute>

[<si zed ause>],

<si zeC ause> controls how big a histogram will be produced. Its format is
S| ZE (<nunber >| REPEAT| AUTQ SKEWONLY) . Here:

value meaning

<nunber > number of histogram buckets (1. ..254)

REPEAT collect histograms only if a column already has a histogram

AUTO Let Oracle determine which histograms to collect based ¢a diatribution and worlkload
" SKEMONLY' Oracle determines which histograms to collect based tredistribution

Here is an example of a statistics gathering command:

DBVS_STATS. GATHER TABLE_STATS(ownname => ’ al ex’ ,

t abname => ' | TEMS' ,

met hod_opt => ' FOR ALL COLUWNS SI ZE 20’ ,
cascade => ' TRUE',

stattab => "alexStats’,

statid =>'itenDl);

This call asks Oracle to gather statistics for all columnaloéx. | TEMS table,

(<col umNane>| <attri bute> [<si zeC ause>]) *

collect column statistics in the form of the 20-bucket hgstoms for all columns
of the table, collect index statistics for all indexes of takle and put all collected
statistics into thel exSt at s table under t en01 tag.

Index statistics table. You can create your own table for storing index statistics
using theCREATE_STAT _TABLE stored procedure from tHeBMS_STATS pack-
age. The procedure takes two mandatory paramei@rsnane andst attt ab,

the name of schema and the name of the table respectively.

For example, to create stats table use the following script:

BEG N
DBVS_STATS. CREATE_STAT TABLE(’ al ex’, 'al exStats’);

END
/

or, directly fromsql*plus type:
EXEC DBMS_STATS. CREATE _STAT_TABLE(’ alex’, 'alexStats’);

You can us®BMS_STATS. DROP_STAT_TABLE(ownnane, stattab) com-
mand to drop the stats table.

Optimizer Hints

To improve/alter behavior of the Oracle query processorpegific queries we use
optimizer hints.

Optimizer hints syntax and use. Optimizer hints are applicable to the following
four SQL commands:

e SELECT
e DELETE
e UPDATE
o | NSERT

Optimizer hints are inserted directly into the query in tbeni of a special com-
ment that immediately follows theNSERT| DELETE| UPDATE| SELECT key-
word. The syntax of the hints is:

(1 NSERT| DELETE| UPDATE| SELECT) /*+ hint [text] [hint [text]]* */
or

(1 NSERT| DELETE| UPDATE| SELECT) --+ hint [text] [hint [text]]*

Here,

e "+" is a signal to Oracle to look for optimizer hints in the commérhere
should be no whitespace between the comment start'(or "--" and
n +II .

e hi nt entries represent the actual optimizer hints.

e t ext entries represent any other texts that is treated as regutaments.

7

Example. Here is an example of an optimizer hint, which invokes a hdsed
optimizer for the query.

SELECT /*+ RULE =/ =
FROM Goods g, ltens i
WHERE g.id = i.itemand g.price < 7;

Types of optimizer hints. Oracle supports the following types of optimizer hints:

e Hints for optimization approach and goal. (See "Selection of Optimizer
approach and goal” section). These hints override the@esgitimizer be-
havior to process current query using a different appraoet/

e Hints for access paths. These hints specify how Oracle will access data
from database tables.

e Hints for query transformations. These hints guide the work of the query
rewriter by allowing/disallowing certain query transfations.

e Hints for join orders. These hints determine in which order multiple tables
are joined.

e Hints for join operations. These hints specify which join algorithm to use
for specific joins in the query.

e Additional hints. These mostly deal with operation-specific issues (e.g.,
hints, specific td NSERT operation).

Hints for optimization approach and goal. These hintsALL_ ROAS, FI RST_ROA5(n) ,
CHOGSE, RULE are described above.

Hints for access paths. An access path is the method of access to/retrieval of
the data from database tables. Oracle supports multiplesaqmaths to relational
tables, and provides a hint for each of them:

Hint syntax Access path Comment

FULL(<Tabl eName>) Full scan selects full table scan to acce3sibl eNanme>
ROW D(<Tabl eNane>) Rowid scan typically used for small outputs

| NDEX(<Tabl eNane> <I ndex> <I ndex>x*) Index scan use index(es) to access the table

| NDEX_ASC(<Tabl eName> <| ndex> <| ndex>x) Index scan explicitly tells to scan index(es) in ascendirtgo
| NDEX_DESC(<Tabl eNarme> <I| ndex> <l ndex>*) Index scan explicitly tells to scan index(es) in descendirdgr
I NDEX_JO N(<Tabl eName> <l ndex> <l ndex>*) Index scan use join of indexes to access table

| NDEX_FFS(<Tabl eName> <I ndex> <| ndex>x) Fastindex scan use fast full index scan

NO.I NDEX(<Tabl eNane> <| ndex>x) prohibits the use of specified indexes.

Notes: The default behavior of NDEX and| NDEX_ASC are the same. If no
indexes are specified INO.I NDEX hint, Oracle essentially is forced to do a full
table scanFast Full Index Scan

Hints for query transformations. The following hints for query transformations
are used in Oracle:

Hint syntax Explanation

USE_CONCAT forcesOR condidtions in\HERE clauses
to be transformed intt/Nl ON ALL operations
NO.EXPAND preventsCBO from consideringOR-expansion of
I NHists
EXPAND_GSET_TO.UNI ON transform grouping queries to unions usldgl ON ALL
MERGE(<Nane>) allows optimizer to merge the view’s query (nested querig actcessing statement

NO.MERGE[(<Name>)] disallows merging view’s query (nested query) into aceesstatement
STAR_ TRANSFORMATI ON select the best plan that uses #tar transformation
FACT(<Tabl eNane> specifies the "fact” table for thetar transformation
NO.FACT(<Tabl eNane> specifies that the table it the "fact table” in the
star transformation

Note: OR-expansion ofl NHists replaces theAttri bute> I N <Query>
expression with aloR of <At t ri but e> = <Val ue> for each<Val ue> re-
turned by<Quer y>.

Note: Thestar transformation applies to a situation where multiple (typically,
small) tables are joined with a single (very) large tabke, when one, large, table
is found in all join conditions in a query. The transformatiadds subqueries to
the join query, which may potentially allow for index-bassztess path to be more
efficient than a full table scan for the large table. It iseadltar transformation
because a typcial example of its use comes from data wareb@mploying the
so-calledstar schema, i.e., a database schema with one very large "fact table”
and many small "dimension tables” connected to the facetaial foreign keys.

Hints for join orders. Oracle has two hints to control join order:

Hint syntax Explanation
ORDERED join tables in the order in which they appear in #ROMclause
STAR join the largest table last (using nested loops join)

Hints for join operations. Oracle has three main methods for joining tables:
nested loops join, sort-based join andhash- based j oi n.

Hint syntax Explanation

USE_NL(<Tabl e> <Tabl e>*) usenested loops join to join all mentioned tables
USE_MERCE(<Tabl e> <Tabl e>x) usesort-based join to join all mentioned tables
USE_HASH(<Tabl e> <Tabl e>*) usehash-based join to join all mentioned tables

LEADI NG <Tabl e>) specifies the first table in join order

HASHAJ, MERGE.AJ, NL_AJ specifies the type of join operation in th&T | Nsubqueries
HASHSJ, MERGE.SJ, NL_SJ specifies the type of join operation in tB&XI STS subqueries

Note: Only oneLEADI NGtable may be specifiedDRDERED hint takes prece-
dence ovet. EADI NGhint.

Plan Explanation

Oracle allows users to review query plans for &8t ECT, DELETE, UPDATE or
I NSERT statement. The SQL command for producing a pladeXBLAI N PLAN,
and is syntax is as follows:

EXPLAI N PLAN [I NTO <Tabl eNane>] FOR <SQLSt at enment >;

Here,<Tabl eNane> is the name of the table into which the plan details are

stored. If table name is not included, Oracle stores the piahe table called

pl an_t abl e.
The schema obl a

SQL> describe pla
Nanme

STATEMENT | D
PLAN | D

TI MESTAWP
REMARKS

OPERATI ON

OPTI ONS
OBJECT_NODE
OBJECT_OWNER
OBJECT_NAMVE
OBJECT_ALI AS
OBJECT_| NSTANCE
OBJECT_TYPE

OPTI M ZER
SEARCH_COLUWNS

I D

PARENT | D

DEPTH

POSI TI ON

cosT

CARDI NALI TY
BYTES

OTHER TAG

PARTI TI ON_START
PARTI TI ON_STOP
PARTI TI ON_I D
OTHER

OTHER_XM.

DI STRI BUTI ON
CPU_COST

| O COST
TEMP_SPACE
ACCESS_PREDI CATES
FI LTER_PREDI CATES
PROJECTI ON

TI VE
QBLOCK_NAVE

n_t abl e can be discovered viaESCRI BE command:

n_tabl e

VARCHAR2(30)
NUVBER

DATE

VARCHAR2(4000)
VARCHAR2(30)
VARCHAR2(255)
VARCHAR2(128)
VARCHAR2(30)
VARCHAR2(30)
VARCHAR2(65)
NUVBER(38)
VARCHAR2(30)
VARCHAR2(255)
NUVBER

NUVBER(38)
NUVBER(38)
NUVBER(38)
NUVBER(38)
NUVBER(38)
NUVBER(38)
NUVBER(38)
VARCHAR2(255)
VARCHAR2(255)
VARCHAR2(255)
NUVBER(38)
LONG

CLOB

VARCHAR2(30)
NUVBER(38)
NUVBER(38)
NUVBER(38)
VARCHAR2(4000)
VARCHAR2(4000)
VARCHAR2(4000)
NUVBER(38)
VARCHAR2(30)

Of these, the following columns are of specific interest:

Column Explanation
OPERATI ON Operation being performed (see list below)
OPTI ONS modifications/options of the operation

OBJECT_NAME table (or other object) on which the operation is performed

I D
PARENT.I D

Possible values of

id of the oepration in the plan
pointer to the parent (in the query plan) of the operation

thePERATI ON attribute are:

DELETE STATEMENT AND- EQUAL DOVAI N | NDEX
| NSERT STATEMENT CONNECT BY FI LTER

10

HASH JO N
MERGE JO N

SELECT STATEMENT
UPDATE STATEMENT
I NLI ST | TERATOR
TABLE ACCESS

CONCATENATI ON
COUNT

| NDEX

REMOTE

SORT

FI RST ROW
FOR UPDATE
PARTI TI ON
SEQUENCE

VI EW

To view the plan from th@l an_t abl e, run the following command:

sel ect

substr (lpad(’ ', level-1)

obj ect _nane
from

pl an_t abl e
start withid =0

|| operation ||

connect by prior id=parent_id;

For example,

SQ> explain plan for

2 select receipt, food,
3 fromgoods g, itens i

flavor, price

4 wherei.item= g.gid and price < 5;

Expl ai ned.

SQL> sel ect

substr (lpad(’ ', level-1)

obj ect _nane
from

pl an_tabl e
start withid =0

|| operation ||

connect by prior id=parent_id;

Qper ati on

(" || options |]

(" || options ||

SELECT STATEMENT ()
MERGE JOI N ()

TABLE ACCESS (BY | NDEX ROW D GOODS

I NDEX (FULL SCAN)
SORT (JON)
TABLE ACCESS (FULL)

6 rows sel ected.

SQL> explain plan for
2 select /+x+ rule

3 fromgoods g, itens i

SYS_C0027499

| TEMS

4 where i.item= g.gid and price < 5;

Expl ai ned.

SQL> sel ect

substr (lpad(’ ', level-1)

obj ect _nane
from
pl an_tabl e
start with id =0
connect by prior id=
4 5 6 7
Operation

|| operation ||

3 parent_id;

bj ect

recei pt, food, flavor, price

—~

11

|| options ||

NESTED LOOPS
UNI ON
| NTERSECTI ON
M NUS

')’,1,30) "Operation",

" Cbj ect"

")",1,30) "Operation",

"Cbject" 2

’)",1,30) "Operation",

2 Object”

SELECT STATEMENT ()
NESTED LOOPS ()

TABLE ACCESS (FULL) | TEMS
TABLE ACCESS (BY | NDEX ROW D GOODS
| NDEX (UNI QUE SCAN) SYS_ 0027499
Timing

sgi*plushaseaset tim ng onandset tim ng off pairof commands that
allow users to collect information about the running timetef queries.

SQL> sel ect count (*)
fromgoods g, itens i, receipts r, customers c
where i.item= g.gid and
g.price <5 and
c.cid = r.custoner and
i.r 2 eceipt = r.rnunber;

El apsed: 00: 00: 00. 03

12

