CSC 468 DBMS Organization Alexander Dekhtyar

Index Structures

Overview

Index Structuresire supplemental data structures created and maintainde BBMS in order to speed up
query processing and data management. Index structuresoaeel on disk in exactly the same manner as
the relational data: each index structure is stored in desifilg, the information there is broken into disk
blocks.

We will consider the following categories of index struetsir

¢ Indexes on Sequential Files. Sequential files allow for efficient access to data only ifr¢his a
efficient way to determine where the data is stored given a keglex structures in this category
address this issue. Two classes of indegesseandsparseare considered.

e Secondary Indexes. Index structures for non-search key attributes in seqaldiigs and/or for heap
files.

e B-trees. A more advanced way to organize indexing.

e Hash tables. An implementation of standard hash-table techniques iorstary storage.

Additional classes of indexes exist, suchimgerted indexesised in Information Retrieval, but our con-
centration is on index structures used for storage ancvetrofrelational data

I ndexes on Sequential Files.

Sequential Files store records ordered by values of a selestalch key

If relation R is stored sequentially and attributeis a search key, then in order to give a fast answer to
the querySELECT * FROM R WHERE A= x we need to know how to find the location in the disk file
for R of the records whose search key value.is

Possibile solutions are:

Scan: If we have only the sequential file to rely on, we can scan tleefifdm the beginning, reading each
page in turn, until we find the search key. The worst-case g@piexity of such algorithm is,
wheren is the number of pages in the disk file.

Dichotomy: A slightly better approach idichotomy which first reads the block in the middle of the file,
determines, which side of it, the key value should be, andimoes splitting the appropriate region of
blocks into half until the necessary block is reached. This\a us to execute the query (log(n))
disk accesses.

Indexing: A separate index structure is built, storing the informmatabout the locations of records with
specific key values. The index structure is much smaller thardata file, and its traversal can be
done faster. Once the desired data is found in the index, rehdyant pages are retrieved from the
data file. The I/O costs in this case will B§m) + O(1) wherem << n is the size of the index file.

Two different types of index structures can be used in catjan with sequential filesdense indexesnd
sparse indexes

Simple Indexes

A simple indexstructure is a sequence of records of the foimalue, Location), whereV alue is the value
of the search keyof a relation stored in a sequential file, ahdcation is the pointer to the location of the
record with this search kéy

The distinction between the two types of simple indespsrseanddensecan be described as follows:

Dense indexegontain information abouéverykey value in the relation, whereaparse in-
dexescontain information about only a subset of key values.

Dense indexesllow the DBMS to determingoth the existanceand thelocation of a record in
the relation, given a key value, without accessing the setplalata file.

Sparse indexesallow the DBMS to determine thecation of a record with a given keyf such
a record exists Generally, accessing the sequential file is required taldisth that no record
with a given key exists.

Dense | ndexes

Dense indexestore information abowverykey in the data file.

The size of a record in an index file is typically much smalleart the size of a data record. If the
key is a single attribute, then we can store a single indexréit®rd insize(keyattribute) + 4 bytes,
if we only store thePagelD of the disk page on which the record is located. (alternitivié we use
(Pagel D, RecordNumber) pair, the size will besize(keyattribute) + 8).

This means thaa single disk block can typically fit many more index recotdmtdata file records.

INote, that, technically, botl alue and Location can be composite. If the search key includes more than onileuaét, V alue
will consist of the list of values of all search key attribsité ocation can be typically thought of as(@ageld, Record Number)
pair, wherePageld points to the page in the sequential file, @ecord Number - to the position of the record on the page.

A typical dense index is shown in the figure below:

Ve

Dense Index File

10
10 -1 —r20
2 e
30 | —
0 | ——
50] 40
o L —tso
\
70
9 | —— 7.0
100 ——— 100
110 | ——— 110
140 | —
\\
0| 20
\ 160
200

Sequential Data File

Spar se Indexes

Sparse indexestore informatioronly about the first key of each disk block.

Where dense indexes win mostly because of the differendesirecord size between an index and a data
file, sparse indexes provide extra savings by storing onéy(still small) record per disk page. This means
that sparse indexes avery compact.

A typical sparse index is shown in the figure below:

Sparse Index File Sequential Data File

10

10 -

20

40 30

90

140 —

220 40

300 | —| 50

70

380 | —| 90

100

110

140

160

200

220

240

280

300

310

350

=/

380

400

420

Index Structures for Keyswith duplicate values

Bothdenseandsparseindexes can be adapted to deal with multiple key occurreindi relation. The key
principles behind these index structures stay:

e Dense indexemclude one record foeach unique key value

e Sparse indexeimclude one record foeach disk block

This can be illustrated on the following example.

Dense Index Data File Sparse Index
/'10 \
w0 —— —~] 10
20 //'30 30
0| | o / 50
40 T =40 50
50 —— 7|50 — 50
60 50

70
80
90
100

50

90
60
70
80
180 |
80
BN

100
100

When retrieving information from indexes for data with daate keys the following needs to be observed

For denseindexes. Given a key value:, records with this value will be stored between the locagioimted
by the desnse index record with keyand the location pointed by the dense index record with the
next key value. This interval may span multiple disk pages.

For sparseindexes. Given a key valuer, to find records with this key in the data file, do the following

¢ If index record with keyr exists, retrieve the block it points to, and the previouskldlf more
than one record for key exists, also retrieve all blocks those reccords point to).

e If there is no record with key, retrieve the block that precedes the first block where kegs a
greater than.

Secondary I ndexes

Secondary indexemre index structures that index the values of search kewttributes of the relation.
Secondary indexesre used to index heap files and to index sequential files orsearch key attributes.

A simple secondary indegonsists of pairg AttributeV alue, RecordLocation). Secondary indexes
must be built to admit multiple keys. Because records wighsiime attribute value can be stored at different
locations in the filesimple secondary indestores one index record for each tuple in the underlyingiogla

An example of a secondary index is shown in Figure 1.
When retrieving from secondary indexa, we need to remenhiggiotlowing:

e Given key valuer, the records with this value can be stored anywhere on diskhd worst-case
scenario, each block has exactly one record with this key,taarefore each block will have to be
read in turn.

Secondary index structures can be compacted a little bre He some variations.

e Secondary index with indirectio®nly one record per key is stored in the index. The pointeidda
a page of pointers to locations of all records with given kalyg. See Figure 2.

e Postings File.Only one record per key is stored in the index. The recordainstthe key value and a
list of pointers to locations of all records with this key fretdata file.

Note, that the record sizes in this index file aegiable See Figure 3.

I ndex M aintenance

Any time an underlying data file is modified, the index stmgctnay need to be modified appropriately
Anindex fileis an example of a sequential data file.
Therefore, the approach to insertion, deletion and modiificanto indexes is the same in general.

Notes:
¢ Index structures can be used during insertion of records satjuential data files to determine the
position where the record must be inserted.

¢ A new index recordnust beinserted into adense indexny time a record with a new key is added to
the relation.

Secondary Index

Data File
40
10 /
~| 90
e
20 L} 2
20
20
= 90
20
= 80
30 \\74 T T
30
40
40 > 10
> 100
50 Ny
20
50
\
80 g
™50
90
40
90 ™ 50
100
100 > 100
™ 20

Figure 1: A Simple Secondary Index

8

e A new index recordnust be inserted into asparse indexany time a new disk page is created in the
data file.

e A new index recordnust beinserted into asecondary indeany time a new record is inserted into
the data file.

e Any time record insertion into a data file caussgling or creation of aroverflow pagei.e., any
time, records arenovedin the data filejndex structures must be updated That is, pointers must be
updatedin some existing index records.

Action Dense Index | Sparse Index | Secondary Index
Create empty overflow block| none none none

Delete empty overflow block | none none none

Create empty sequential blogknone insert none

Delete empty sequential blogknone delete none

Insert record insert(?) update(?) insert

Delete record delete(?) update(?) delete

Slide record update update (?) update

“(?)" means “possibly.”

Secondary Index

Data File
= 40
10 >
20 —
| 20
30
40
50 ™ 90
> T 80
80]|
> 30
90
100 N _| 10
., 100
%
= 20
> 50
= 40
e -
> 50
\\
\ 100
> 20
| 20

Figure 2: Secondary index with indirection.

10

Secondary Index Data File

10 > 40
> 90
N _
20 ~1 20
N
-
30 ~1 90
s o — R - 80
TN I S N
40 T 30
N
50 N
— ~1 10
> 100
20
80
TN ~ 50
90 -
~1 40
N - 50
100
- Jr T . 100
> 20
20

Figure 3: Secondary index with postings.
11

