
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Query Processing: an Overview

Query Processing in a Nutshell

Physical Query
Plan generator

Query rewriter

Logical Query
plan generator

Preprocessor

Parser

QUERY

Logical query plan

Preferred logial
query plan

Preferred physical 
query plan

1



Parser

TheParser is responsible for translating the query from SQL into aparse tree.

Preprocessor

ThePreprocessor is responsible forsemantic checking

• Relation names (all relations are “correct”)

• Attribute uses (resolve all attribute mentions)

• Types (typecheck all expressions)

Logical Query Plan Generator

The parser produces a parse tree that identifies theSELECT, FROM, WHERE and
other clauses of the SQL query. TheLogical Query Plan Generator converts
the parse tree them into a relational algebra expression, and returns the tree corre-
sponding to this expression. This tree is called the initiallogical query plan.

A number of cases needs to be considered.

SELECT-FROM-WHERE statement with no nested queries. In this case, the
conversion is straighforward (from innermost operation tothe outtermost opera-
tion):

1. Product (×) of all relations in theFROM clause;

2. Selection (σ) on all conditions in theWHERE clause;

3. Projection (π) onto all attributes in theSELECT list.

SELECT-FROM-WHERE statement with uncorrelated nested queries. The
transformation is done in two steps.

Step 1. The outter query tree is built for the non-nester part of the query. The
inner query tree is built. The inner query tree is attached tothe outter query tree
using atwo-argument selection node.

This node is marked with selection operationσ and has two children. First child
is a subtree representing the outter relation The second child is the inner query
subtree.

Step 2. The two-argument selection node is replaced with aproduct or join
node.

2



Example. Consider the following SQL statement

SELECT *
FROM Employee
WHERE Employee.department IN (SELECT ID

FROM Departments
WHERE Name = ’Toys’);

The figure below shows the two stages:

σ

<condition>Employee

IN πIDdepartment

Departments

σName="Toys"

Departments

Name="Toys"
σ

X

σdepartment = ID

Employees

πEmployees.*

Note: Uncorrelated queries allow the logical query plan generator to replace the
two-argument select with a product, whose second argument is the result of the
nested query.

SELECT-FROM-WHERE statement with correlated nested queries The trans-
formation is done in two steps. The first step is the same as forthe uncorrelated
nested query, the second step is somewhat more complex.

Step 1. The outter query tree is built for the non-nester part of the query. The
inner query tree is built. The inner query tree is attached tothe outter query tree
using atwo-argument selection node.

This node is marked with selection operationσ and has two children. First child
is a subtree representing the outter relation The second child is the inner query
subtree.

Step 2. The two-argument selection node is replaced with aproduct node. The
correlated selection condition from the right-hand-side subtree of the two-argument
selection ismoved above the product.

Example. Consider the following SQL statement

SELECT *
FROM Employee E1
WHERE Employee.Salary = (SELECT MAX(Salary)

FROM Employee E2

3



WHERE E1.Department = E2.Department)

The figure below depicts the two steps:

σ

X

Employees

E1.Department=E2.Department

Employees

γ
MAX(Salary)−>maxS,Department

σE1.Salary = maxS

σ

<condition>

=Salary

σ

γMAX(Salary)

E1.Department=E2.Department

Employees

Employees

π
E1.*

Note: The conversion in Step 2 is done as follows:

• The grouping/aggregation operator (or the projection operator) is expanded
to include the attribute(s) participating in the correlated conditions.

• Selection node for the correlated condition is deleted fromthe tree.

• The two-argument selection node is replaced with a product node.

• Two selection nodes are pus above the product node. The first node repre-
sents the correlated condition(s) from the nested query. The second node
represents the selection condition from the outter query that involved the
nested query.

• If needed, a projection node, projecting out all attributesfrom the result of
the “nested” query is added as the root of the logical query plan.

Rewriting Logical Query Plans

Logical query plan created on the previous stage may not be the best possible way
to execute the query. Thelogical query plan rewriting stage analyzes the original
logical query plan and suggests one or more better logical query plans.

Rewriting logical query plans is based onquery rewrite rules. Query rewrite
rules are equivalences of the underlying relational algebra. The list of query rewrite
rules for the relational algebra is presented in a separate handout. Query rewriting
proceeds as follows:

• A rewrite rule is selected.

• A sub-expression in the current logical query plan which hasthe same struc-
ture as one of the sides of the rewrite rule is identified.

4



• Any conditions required for the rule application are verified.

• The selected subexpression is replaced with the other side of the rewrite rule.

Example. Consider the following relational algebra expression, representing a
logical query plan:

σR.A=S.B(πR.A,R.C,S.B(R × S)) ⊲⊳ T.

We select the following relational algebra equivalence, asour rewrite rule:

σC(πL(R)) ≡ πL(σC(R)).

This rule is applicable iff conditions inC mention only attributes inL.

We identify the part of the logical query plan that matches the left-hand side of
the rewrite rule:

σR.A=S.B(πR.A,R.C,S.B(R × S)) ⊲⊳ T

We verify that our selection condition contains only attributes mentioned in the
projection list.1.

Finally, we are replacing the left-hand side of the rewrite rule with the right-hand
side:

πR.A,R.C,S.B(σR.A=S.B(R × S)) ⊲⊳ T.

As a tree, the quey plan will be rewritten as follows:

1Although, for our application this is not necessary. This condition is important when we are
trying to push projection inside the selection.

5



σ

π

X

SR

T

X

SR

Tπ

σ

How do we determine, which logical query plan is better?

Typically, it is done in one of two ways:

1. Cost-based estimation.

2. Use of heuristic rules.

Cost-based estimation will be discussed together with physical plan construction.

Heuristic rules are rules which specify, which direction of a rewrite rule ismore
favorable and which rewrite rules should be preferred.

Traditional heuristic rules in a logical query rewrite system include:

• Pushing down selections. By pushing selection operations down (i.e.,
making them execute as early as possible), we usually are decreasing the
sizes of relations with which we need to work earlier.

Note: in some rare cases, involving nested queries or views, selections can
actually be pushed up first, and then pushed down on more than one path of
the tree for best effect.

Note: Selection conditions combined with anAND connective can be split
and pushed down separately.

• Pushing down projections. Projection operation may not reduce the num-
ber of tuples, but will reduce the size of the relation with which other oper-
ations have to work. By pushing projections down, or, sometimes, by intro-
ducing new projections to reduce the size of the output, we may improve the
cost of the query.

6



• Moving duplicate elimination operations. Duplicate eliminations can be
costly. However, sometimes they can be eliminated, combined, or post-
poned. In some other cases, they can actually be pushed down and yield
significantly smaller relations passed to the next operations.

• Eliminating cartesian product. Cartesian product operations can be com-
bined with selection operations (and sometimes, with projection operations)
which use data from both relations to form joins. Join execution algorithms
are typically faster than a cartesian product followed by selecection (at the
very least, because selection in this case may require an extra scan).

Physical Query Plan Optimization

Logical query rewriting can produce one(or more candidate) query plan(s). Phys-
ical query plan optimization stage involves the following operations:

• Selection of the order and grouping in which associative-and-commutative
operations are to be executed.

• Selection of the appropriate algorithm for each logical query plan operator.

• Insertion of additional operations: scans, sorts, etc., needed for faster perfor-
mance.

• Selection of the means of passing results of one operation tothe next oper-
ation: through main memory buffer, through temporary disk storage or via
tuple-at-a-time iterators.

7


