bSC 468 DBMS Implementation Alexander Dekhtyar'

Query Processing: an Overview

Query Processing in a Nutshell

Parser

l

Preprocessor

Logical Query
plan generator

Logical query plan

Query rewriter

Preferred logial
query plan

Physical Query
Plan generator

l Preferred physical
query plan

/\

Par ser

TheParser is responsible for translating the query from SQL intoesase tree.

Preprocessor

ThePreprocessor is responsible fosemantic checking

¢ Relation names (all relations are “correct”)
e Attribute uses (resolve all attribute mentions)

e Types (typecheck all expressions)

Logical Query Plan Generator

The parser produces a parse tree that identifie SELeECT, FROM WHERE and
other clauses of the SQL query. Thegical Query Plan Generator converts
the parse tree them into a relational algebra expressiahedarns the tree corre-
sponding to this expression. This tree is called the inliggical query plan.

A number of cases needs to be considered.

SELECT-FROM-WHERE statement with no nested queries. In this case, the
conversion is straighforward (from innermost operatiorih® outtermost opera-
tion):

1. Product &) of all relations in theFROMclause;
2. Selection §) on all conditions in th&\HERE clause;

3. Projection £) onto all attributes in th&ELECT list.

SELECT-FROM-WHERE statement with uncorrelated nested queries. The
transformation is done in two steps.

Step 1. The outter query tree is built for the non-nester part of therg The
inner query tree is built. The inner query tree is attachethéooutter query tree
using atwo-argument selection node.

This node is marked with selection operatioand has two children. First child
is a subtree representing the outter relation The second ishihe inner query
subtree.

Step 2. The two-argument selection node is replaced witbraduct or join
node.

Example. Consider the following SQL statement

SELECT =
FROM Enpl oyee
VWHERE Enpl oyee. departnent I N (SELECT |ID

FROM Depart nment s
WHERE Nanme = ' Toys');

The figure below shows the two stages:

”Employees.*

O-department =ID

Employejondmom - X

department N

‘ Empl oyees Name="Toys"

GName:"Toys"

Departments
Departments

Note: Uncorrelated queries allow the logical query plan generatoeplace the

two-argument select with a product, whose second argurseifiei result of the
nested query.

SELECT-FROM-WHERE statement with correlated nested queries The trans-
formation is done in two steps. The first step is the same athéuncorrelated
nested query, the second step is somewhat more complex.

Step 1. The outter query tree is built for the non-nester part of therg The
inner query tree is built. The inner query tree is attachethéooutter query tree
using atwo-argument selection node.

This node is marked with selection operatioand has two children. First child

is a subtree representing the outter relation The second ishihe inner query
Subtree.

Step 2. The two-argument selection node is replaced wigin@duct node. The
correlated selection condition from the right-hand-sidletee of the two-argument
selection igmoved above the product.

Example. Consider the following SQL statement

SELECT =

FROM Enpl oyee E1

WHERE Enpl oyee. Sal ary = (SELECT MAX(Sal ary)
FROM Enpl oyee E2

3

WHERE E1. Departnment = E2. Departnent)

The figure below depicts the two steps:

=]

‘ E1.Department=E2.Department

O-E1.Department:EZ.Department

Employees / \

Employees yMAX(Salary)—>m.51xS,Departr

Employees

‘ E1l.*
Employees <condition> - o
/O ‘\ ‘ El.Salary = maxS
Salary = Yuax(salary) o

X

Note: The conversion in Step 2 is done as follows:

e The grouping/aggregation operator (or the projection aipey is expanded
to include the attribute(s) participating in the corretht®nditions.

e Selection node for the correlated condition is deleted ftoentree.
e The two-argument selection node is replaced with a prododén

e Two selection nodes are pus above the product node. The dust repre-
sents the correlated condition(s) from the nested querye Sdtond node
represents the selection condition from the outter queay itvolved the
nested query.

e If needed, a projection node, projecting out all attributesn the result of
the “nested” query is added as the root of the logical queam.pl

Rewriting Logical Query Plans

Logical query plan created on the previous stage may notébeht possible way
to execute the query. Thegical query plan rewriting stage analyzes the original
logical query plan and suggests one or more better logicayquians.

Rewriting logical query plans is based qoery rewrite rules. Query rewrite
rules are equivalences of the underlying relational algebhe list of query rewrite
rules for the relational algebra is presented in a sepaeatddut. Query rewriting
proceeds as follows:

e A rewrite rule is selected.

e A sub-expression in the current logical query plan whichthassame struc-
ture as one of the sides of the rewrite rule is identified.

¢ Any conditions required for the rule application are vedfie

e The selected subexpression is replaced with the other ttle cewrite rule.

Example. Consider the following relational algebra expressionyesenting a
logical query plan:

0rA=S.B(TR.ARCSB(R X S))>xT.

We select the following relational algebra equivalenceguasrewrite rule:

oc(rL(R)) = mr(oc(R)).

This rule is applicable iff conditions i@ mention only attributes ird..
We identify the part of the logical query plan that matches|#it-hand side of

the rewrite rule:
orA=SB(MRAR.CSB(R XS)) =T

We verify that our selection condition contains only atités mentioned in the
projection list.2,

Finally, we are replacing the left-hand side of the rewnitle mwith the right-hand
side:

TRARC,S.B(ORA=s.B(R x S)) > T.

As atree, the quey plan will be rewritten as follows:

Although, for our application this is not necessary. Thisdition is important when we are
trying to push projection inside the selection.

X
R S
How do we determine, which logical query plan is better?
Typically, it is done in one of two ways:

1. Cost-based estimation.

2. Use of heuristic rules.

Cost-based estimation will be discussed together withipalyglan construction.

Heuristic rules are rules which specify, which direction of a rewrite ruleriere
favorable and which rewrite rules should be preferred.

Traditional heuristic rules in a logical query rewrite ®rstinclude:

e Pushing down selections. By pushing selection operations down (i.e.,
making them execute as early as possible), we usually areatang the
sizes of relations with which we need to work earlier.

Note: in some rare cases, involving nested queries or views, tg@ieccan
actually be pushed up first, and then pushed down on more ti@path of
the tree for best effect.

Note: Selection conditions combined with @&ND connective can be split
and pushed down separately.

e Pushing down projections. Projection operation may not reduce the num-
ber of tuples, but will reduce the size of the relation withiethother oper-
ations have to work. By pushing projections down, or, somesi, by intro-
ducing new projections to reduce the size of the output, weimparove the
cost of the query.

e Moving duplicate elimination operations. Duplicate eliminations can be
costly. However, sometimes they can be eliminated, condbioe post-
poned. In some other cases, they can actually be pushed duvyield
significantly smaller relations passed to the next opamatio

¢ Eliminating cartesian product. Cartesian product operations can be com-
bined with selection operations (and sometimes, with gtme operations)
which use data from both relations to form joins. Join execualgorithms
are typically faster than a cartesian product followed Hgcetion (at the
very least, because selection in this case may require eansodn).

Physical Query Plan Optimization

Logical query rewriting can produce of@ more candidate) query plan(s). Phys-
ical query plan optimization stage involves the followingeoations:

e Selection of the order and grouping in which associative-@@mmutative
operations are to be executed.
e Selection of the appropriate algorithm for each logicalrgysan operator.

¢ Insertion of additional operations: scans, sorts, eteded for faster perfor-
mance.

e Selection of the means of passing results of one operatitimetaext oper-
ation: through main memory buffer, through temporary digkage or via
tuple-at-a-time iterators.

