Query Processing: Cost-based Query Optimization

Join Operation

Estimating the size of join

For $R \bowtie C \bowcirc S$ operation:

- Consider the cost as the cost of $\sigma_C(R \times S)$. We know that $T(R \times S) = T(R) \cdot T(S)$, so, we can now apply our estimates for selection operation to it. (Estimate selectivity of an inequality comparison, e.g., $R.A < S.B$ as $\frac{1}{3}$).

For $R \bowcirc S$:

- If R and S have disjoint values: $T(R \bowcirc S) = 0$.
- If R and S are joined on a one-to-one foreign key, then $T(R \bowcirc S) = \min(T(R), T(S))$.
- If R and S are joined on a many-to-one foreign key, then $T(R \bowcirc S) = \max(T(R), T(S))$ (actually, it is the size of the table that contains the foreign key, which would typically be the larger table).
- If R and S have many tuples to be joined (join attributes have uniformly many values), then $T(R \bowcirc S) = O(T(R) \cdot T(S))$.

To develop better estimates, we consider two assumptions:

1. **Containment of value sets.** Assume that if Y is an attribute in both R and S, then if $V(R, Y) \geq V(S, Y)$ then all Y-values in S are also found in R.

2. **Preservation of value sets.** If A is an attribute in R but not in S, then $V(R, A) = V(R \bowcirc S, A)$.

Under these assumptions:
• For natural joins/equijoins with a single join attribute:

\[T(R \bowtie S) = \frac{T(R) \cdot T(S)}{\max(V(R,Y),V(S,Y))} \]

• For natural joins/equijoins with multiple join attributes. Let \(A_1, \ldots, A_k \) be the join attributes:

\[T(R \bowtie S) = \frac{T(R) \cdot T(S)}{\prod_{i=1}^{k}(\max(V(R,A_i),V(S,A_i)))} \]

Computing \(B(R \bowtie S) \). Note that \(R \bowtie S \) has a different schema than either \(R \) or \(S \) (unless both \(R \) and \(S \) have the same schema, and then, \(R \bowtie S = R \cap S \)). Usually, a record from \(R \bowtie S \) will be larger than a record from either \(R \) or \(S \). Thus, in addition to computing \(T(R \bowtie S) \), we need to compute \(B(R \bowtie S) \).

The computation is similar to the computation of \(B(\pi_L(R)) \). Let \(m_1 \) be size of a record from \(R \), \(m_2 \) – the size of a record from \(S \), and \(m \) be their common part. Then estimate

\[B(R \bowtie S) = \frac{T(R \bowtie S)}{B} \cdot (m_1 + m_2 - m) \]

Selecting Join Order

Some join algorithms (hash-based, nested loops) treat relations asymmetrically.

• **Build relation**: the (usually smaller) relation that is put in main memory;

• **Probe relation**: the relation that is scanned;

We assume that in expression \(R \bowtie S \), \(B(R) \leq B(S) \), and \(R \) is the build relation, while \(S \) is the probe relation.

Join of two relations. Select the smaller relation as the build, select the larger as the probe.

Join of three or more relations. There are multiple tree shapes that are possible for the logical query plan for a join of three or more tables. Typically, only the left-deep join trees are considered. A binary tree is left-deep if all right children of all its nodes are leaves.

Use of left-deep join trees reduces the problem of selecting a plan for join to the problem of ordering tables. Still, for \(n \) tables in the join, there are \(n! \) ways to order them.

• Exhaustive enumeration. Too expensive!

• Look at a subset of orderings. **dynamic programming**.

• Use a heuristic. **greedy algorithm**.