Index Structures: Part 2

B+-trees

B+-trees

Just as simple index structures, B+-trees are designed to index the content of existing database relations/data files in DBMS.

A B+-tree is a balanced tree data structure defined as follows:

- Each node in a B-tree consists of \(n\) key values and \(n + 1\) pointers. Figure below shows the node structure for \(n = 3\). For simplicity, we will write that a node \(N\) is a pair \((\text{Keys}[0..n], \text{Pointers}[0..n+1])\).

\[
\text{B+tree Node, n=3}
\]

<table>
<thead>
<tr>
<th>Keys:</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointers:</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

- \(B+-tree\) have three types of nodes: root, internal and leaf.

- Leaf nodes are constructed as follows:
 - At least half of the key value slots in each leaf node is not empty.
 - Given a leaf node \(l = (\text{Keys}[], \text{Pointers}[])\), if \(l.\text{Keys}[i] = a\) (not empty) then \(l.\text{Pointers}[i]\) contains a pointer to a record with key value \(a\) in the data file.
 - \(l.\text{Keys}[i] \leq l.\text{Keys}[i+1]\) for all non-empty slots.
 - The last pointer of the leaf node, \(l.\text{Pointers}[n+1]\) points to the next leaf node \(l'\). If \(k\) is the number of non-empty key values in \(l\), then \(l.\text{Keys}[k] \leq l'.\text{Keys}[1]\).
The structure of leaf nodes is illustrated below.

- **Internal nodes** have the following structure:
 - Each internal node has at least half of its key value slots occupied.
 - Given an internal node \(N = (\text{Keys}, \text{Pointers}) \), if \(N.\text{Keys}[i] = a_i \) is non-empty, then \(N.\text{Pointers}[i] \neq \text{NULL} \) and points to a node in the next level of the \(B^+ \)-tree. This node may be a leaf node, or another internal node.
 - If \(N.\text{Pointers}[i] = N' \), then for \(j \leq n \), if \(N'.\text{Keys}[j] \) is not empty, then \(N'.\text{Keys}[j] \leq N.\text{Keys}[i] \).
 Additionally, if \(i > 1 \), \(N'.\text{Keys}[j] \geq N.\text{Keys}[i - 1] \).
 - If \(N.\text{Keys}[n] = a_n \) is not empty, then \(N.\text{Pointers}[n + 1] \neq \text{NULL} \) points to a node \(N' \) in the next level of the \(B^+ \)-tree, and all nonempty keys \(N'.\text{Keys}[j] \geq N.\text{Keys}[n] \).

The structure of internal nodes is shown below:

- **Root node.** The structure of the root node of the \(B^+ \)-tree is similar to the structure of the internal node, with the exception that the root node may contain...
fewer than half of its key value slots occupied. Instead, at least 2 pointers (and 1 key) in the root node must be non-empty.

A simple $B+$-tree for $n = 3$ is shown below:

B+-trees and Indexing Database Records

B-trees, and $B+$-trees are ballanced trees with a guarantee that beyond the root node, all other nodes are rather dense (i.e., filled at 50% or more).

The search algorithm over B-trees and $B+$-trees is straightforward:

- given a key value X, starting at the root node, traverse the key values stored in the node, until a value $Y > X$ is discovered at some slot i.
- Retrieve the node $Pointer[i]$.
- If all non-empty key values in the node are smaller than X, follow the last non-empty pointer.

$B+$-trees are an adaptation of the standard B-tree structure to the secondary storage. Each node of a $B+$-tree has the size of one disk block. The data portion of the disk block is broken into n ($Key, Pointer$) pairs, and an additional, $n + 1$st pointer is stored at the end of the page.

The second distinction of $B+$-trees is the fact that all leaf nodes are linked with each other. This makes it easy to search for keys in a sequence: searching for a starting position is done by traversing the tree, but after the first leaf node is
retrieved, one can follow the \(n + 1 \)st pointer on the page, to retrieve the next leaf node.

Note: we also note that while the standard structure of a \(B⁺ \)-tree assumes only a single-linked list of leaf nodes, we can also store a pointer to previous leaf node in the block header of each leaf node page.

\(B⁺ \)-trees can be used to store any of the index structures discussed before:

- **Dense indexes** on sequential files. The leaf nodes form the dense index, while the upper layers provide fast navigation to the necessary key.

- **Sparse indexes** on sequential files. Same as above, leaf nodes form the sparse index.

- **Secondary indexes.** Leaf nodes present all key occurrences in sorted order.

- **Indexes with duplicate keys.** \(B⁺ \)-trees need to be slightly updated to allow for seamless indexing of data with duplicate keys. In particular, the meaning of a key in an internal node has to change somewhat.

How many layers?

Suppose our disk blocks contain 4Kb each, 4096 bytes. Let our key values be integers, 4 bytes long and let our pointers be 8 bytes in size.

How many key values can we store in a single node?

We know that \(12n + 8 + \text{HeaderSize} \leq 4096 \). If we take \(\text{HeaderSize} \) to be 80 bytes, this would lead to \(12n = 4008 \), or

\[
n = 334.
\]

A one-level \(B⁺ \)-tree (root and leaves) can thus index \(334^2 = 111,556 \) records. A two-level \(B⁺ \)-tree (root, internal layer and leaves) can index \(334^3 = 37,259,704 \) records.