Query Processing: Cost-based Query Optimization

Physical Query Plan Optimization

Logical query rewriting can produce one (or more candidate) query plan(s). Physical query plan optimization stage involves the following operations:

- Selection of the order and grouping in which associative-and-commutative operations are to be executed.
- Selection of the appropriate algorithm for each logical query plan operator.
- Insertion of additional operations: scans, sorts, etc., needed for faster performance.
- Selection of the means of passing results of one operation to the next operation: through main memory buffer, through temporary disk storage or via tuple-at-a-time iterators.

Basics of Cost Estimation

In order to be able to tell, which query plans are better, we need to be able to predict/estimate the I/O costs of the plans. The I/O costs depend on two things:

- the specific chosen to execute each operation;
- (estimated) sizes of all intermediate results.

We know that given the sizes of the input relations, we can estimate the I/O costs of each execution algorithm. We, thus, would like to have an approach to estimation of sizes of intermediate results which has the following properties:

1. It yields accurate estimates (Accuracy);
2. It is easy to compute (Efficiency);

3. It is logically consistent: the estimates do not depend on how the intermediate result was computed, only on what the intermediate result looks like (Consistency)

Size estimation is a heuristic process. Some standard approaches are described below.

Projection

Let \(R \) be a relation, and consider the operation \(\pi_L(R) \).

Projection operation does not remove tuples from the relation. However, the size of each tuple shrinks \(^1\).

Let \(m \) be the size of a tuple in \(R \), and \(m' \) be the size of the tuple in \(\pi_L(R) \). \(m' \) can be computed in a straightforward manner from \(m \), knowing the schema of \(R \).

Then, \(B(\pi_L(R)) \) can be estimated as follows:

\[
B(\pi_L(R)) = \frac{m'}{m} B(R).
\]

Selection

Case 1: \(\sigma_{A=c}(R) \).

This operation will select only the tuples in \(R \) for which the value of attribute \(A \) is \(c \). There are \(V(R, A) \) different values of the attribute \(A \) in \(R \), so, we can estimate the number of tuples in the result as

\[
T(\sigma_{A=c}(R)) = \frac{T(R)}{V(R, A)}.
\]

Case 2: \(\sigma_{A<c}(R) \). (or any other inequality)

Standard estimation technique is

\[
T(\sigma_{A<c}(R)) = \frac{T(R)}{3}.
\]

Another possible solution is as follows. Let \(V_c(R, A, c) \) be the number of unique values of \(A \) in \(R \) that are less than \(c \). In this case, we can estimate

\[
T(\sigma_{A<c}(R)) = \frac{T(R) \cdot V_c(R, A, c)}{V(R, A)}.
\]

Case 3: \(\sigma_{A\neq c}(R) \).

Standard estimate, applicable when \(V(R, A) \) is very large is

\(^1\)A more general version of projection operation also may allow for increase in size of the tuple, but such increases can also be predicted fairly well.
\[T(\sigma_{A \neq c}(R)) = T(R). \]

If \(V(R, A) \) is not large, while \(T(R) \) is large, the following estimate may be better:

\[T(\sigma_{A \neq c}(R)) = T(R) \cdot \frac{V(R, A) - 1}{V(R, A)}. \]

Case 4 \(\sigma_{C_1 \text{AND} C_2}(R) \).
Treat this as \(\sigma_{C_1} (\sigma_{C_2}(R)) \), and cascade the estimates.

Case 4 \(\sigma_{C_1 \text{OR} C_2}(R) \).
We know that

\[\max(T(\sigma_{C_1}(R)), T(\sigma_{C_2}(R))) \leq T(\sigma_{C_1 \text{OR} C_2}(R)) \leq T(\sigma_{C_1}(R)) + T(\sigma_{C_2}(R)). \]

The left-hand-side estimate corresponds to positive correlation, which states that one condition subsumes the other completely. The right-hand-side estimate corresponds to the negative correlation/mutual exclusion assumption, which states that no tuple can satisfy both conditions at the same time.

We can also construct an estimate for an independence assumption:

\[T(\sigma_{C_1 \text{OR} C_2}(R)) = T(R)(1 - (1 - \frac{1}{V(R, A)})^2). \]

If we have better estimates \(m_1 \) and \(m_2 \) for \(\sigma_{C_1}(R) \) and \(\sigma_{C_2}(R) \), this becomes:

\[T(\sigma_{C_1 \text{OR} C_2}(R)) = T(R)(1 - (1 - \frac{m_1}{T(R)})(1 - \frac{m_2}{T(R)})). \]

Union

For bag union \(T(R \cup_{\text{bag}} S) = T(R) + T(S) \).
For set union, we have

\[\max(T(R), T(S)) \leq T(R \cup S) \leq T(R) + T(S). \]

A possible estimate is the mid-point:

\[T(R \cup S) = \max(T(R), T(S)) + \frac{T(R) + T(S)}{2}. \]

Intersection

\[0 \leq T(R \cap S) \leq \min(T(R), T(S)). \]

One possible estimate is
\[T(R \cap S) = \frac{\min(T(R), T(S))}{2}. \]

Another possibility is to use formulas for natural join, as \(R \cap S = R \bowtie S \). (Joins will be discussed later).

Difference

\[T(R) \leq T(R - S) \leq \max(T(R) - T(S), 0). \]

A possible estimate is

\[T(R - S) = \max(0, T(R) - \frac{1}{2}T(S)). \]

Duplicate Elimination

Generally speaking

\[T(\delta(R)) = V(R, (A_1, \ldots, A_n)), \]

if \(R \)'s schema is \(R(A_1, \ldots, A_n) \). However, this information may not be immediately available.

One possible estimate (when \(T(R) \) is very large) is

\[T(\delta(R)) = \Pi_{i=1}^n V(R, A_i), \]

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

\[T(\delta(R)) = \min(0.5 \cdot T(R), \Pi_{i=1}^n V(R, A_i)). \]

Grouping and Aggregation

Let \(L = (G_1, \ldots, G_k) \). If we know \(V(R, (G_1, \ldots, G_k)) \), then

\[T(\gamma_L(R)) = V(R, (G_1, \ldots, G_k)). \]

Otherwise, we may estimate the number similarly to the case of duplicate elimination:

\[T(\gamma_L(R)) = \Pi_{i=1}^k V(R, G_i), \]

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

\[T(\gamma_L(R)) = \min(0.5 \cdot T(R), \Pi_{i=1}^k V(R, G_i)). \]