
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Maintenance of Data Stored on Disk

Data Organization in a File

Individual records can be organized in a number of differentways in the database
file.

Heap File Organization. Heap File denotes a record organization method where
records are stored on disk pages on first-come — first-serve basis, in no
particular order. That is, any record can be placed anywherein the file,
subject to space availability.

Sequential File Organization. A search keyis defined for the relation, and records
are stored ordered according to the search key. Note that thesearch keyneed
not be a primary key, or even a superkey of the relation being stored. New
records must be inserted according to their search key value.

Hashing File Organization. Records are hashed on some attribute value. Each
hash value is associated with a block (sequence of blocks is overflow buckets
are needed) where the record is to be stored.

Record Modifications

We need to discuss three basic types of modification:

• Record Insertion

• Record Deletion

• Record Update

Insertion

Record insertion procedures are different for different file organizations.

1



Insertion into a Heap File

To insert records into a heap file, it is convenient to keep a (double-)linked list of
all heap file pages with available space. The pointer to the first page of the list can
be stored on theheader page. The pointers to next/previous page on the list can be
stored in theblock headers.

Assuming existance of such support, insertion of a record into a heap file can be
done as follows:

Algorithm InsertRecordHeap(File F, Record R)

begin
HeaderPage = ReadBlock(F,1); // Retrieve the header page of the file
FreeSpacePageId = HeaderPage.FreeSpaceList;

Block = ReadBlock(F,FreeSpacePageId); // Retrieve the block
RecordNum = FindFreeSlot(Block); // find a free slot
Put(R, Block, RecordNum); // write the contents of R into the

// available slot
if (No more free space left in Block)

begin
HeaderPage.FreeSpaceList = Block.FreeSpaceListNext;
NextBlock = ReadBlock(F,Block.FreeSpaceListNext);

NextBlock.FreeSpaceListPrevious = 1;
WriteBlock(NextBlock, F, Block.FreeSpaceListNext);

end

WriteBlock(Block, F, FreeSpacePageId); // write the data back to disk
WriteBlock(HeaderPage, F, 1);

end

Notice that this algorithm assumes thatFreeSpacePageId is not NULL. If it
is NULL, then a new page needs to be created, and the records needs to be put on
it.

Finding a free slot on the disk page

There is a number of ways by which a free slot can be found on thedisk page. All
the computations occur in main memory and do not have I/O costs associated with
them.

1. Direct Scan. Each record contains atombstone- a byte indicating whether
it is active or deleted. The disk page is scanned until the first record with the
tombstoneset to“deleted” is found.

2. Bitmap. Record header contains a bitmap, specifying which of the records
on the page are available. Instead of the entire disk page, the bitmap is

2



scanned until the first available slot is discovered. After the record is in-
serted, the bitmap must be updated.

Insertion into a Sequential File.

When data is inserted into a sequential file, the following must be observed:

• The record needs to be inserted according to the value of its key.

• The file needs to be scanned (or an outside index needs to be used) to find
the disk block where there record must be inserted.

• If there is no empty slot at the location where the record needs to be inserted,
record slidingmust be used to shift all subsequent records on the page (as-
suming there is space available). This operation is as simple byte copy, so it
can be performed fast.

• If there is not space on the page, two possibilities can be considered:

– Record sliding to next page. If the next disk block has enough space,
we can do record sliding and put some overflow records on the next
page, using record sliding there as well.

– Overflow page. Alternatively, a new disk block can be allocated. The
disk block is inserted between the current block and the nextblock in
thesearch keyorder. The contents of the current block are split roughly
evenly between the old block and the new block, after which the new
record is inserted in its designated location (which can be either on the
old page, or on the new one).

Insertion into a Hashed File.

Insertion into ahashed fileproceeds in two steps.

Step 1: The hash key of the record being inserted is computed, and thedisk page(s)
for the hash bucket is/are identified.

Step 2: An empty slot is found on one of the pages of the hash bucket (ifnot - a
new page is added to the hash bucket), and the record is inserted into that
slot. The procedure is similar to the one used for aheap file.

Deletion

Unlike insertion, methodology of record deletion does not depend on the type of
file used to store the relational table.

Some traditional approaches to deletion are:

Deletion with slide: The deleted record creates a “gap” on a disk page. To cover
this gap, the records following the gap on the disk page are shifted left, cov-
ering the gap, and moving the empty slot to the end of the page.

3



Advantages: Free space is always located only at the end of the disk page.
One pointer in the block header (or simply a count of occupiedslots for fixed-
length records) is sufficient to keep track of free space within the block.

Disadvantages: The deleted record gets immediately overwritten. This re-
moves the possibility of an easy “undo” action.Additionally, this complicates
handling dangling pointers to the deleted record (the pointers will now point
at a completely different “live” record).

Deletion without slide: The slot of the deleted record is declared available, and
the record itself is marked as deleted (by activating the tombstone flag, for
example), but the actual space occupied by the record stays as-is. The record
can be later overwrritten, when a new record is inserted in the same space.

Advantages: Simplicity. This method requires little extra actions, save for
changing the status of the slot to “available”.

Disadvantages: Gaps in the disk page. This means that more space or
more complicated organization is needed to keep track of free space on the
page. Possible solutions include a bitmap in the disk header, or a linked list
of all available slots: the pointer to the first available slot is stored in the disk
header, while all subsequent pointers are stored in the records themsleves.

Deletion without giving up space: The record is marked as deleted, but the space
is not freed. No new record can be stored in this space until a major DB
reconstruction/reconciliation occurs.

Advantages: Ensures proper handling of all “dangling pointers”.

Disadvantages: The relation grows in size with every insertion. Deletions
do not decrease the space alotted for the insertion.

Additionally, deletions may lead to removal of disk pages from the file. There is
a number of approaches here.

• “Lazy evaluation.” The disk page is removed only when it contains no live
records on it. Disk pages are never merged.

• “Eager evaluation.” Each time a deletion occurs, the system checks whether
current disk page can be merged with one of its neighbors. If the answer is
yes, such merger is performed. The minimal criterion for merger is the abil-
ity to fit all records into the free space available in the two neighboring pages.
Other, stricter criteria (e.g., requiring at least a few empty slots available in
the resulting blocks) are also possible.

Update

For fixed-length record,record updatesdo not change the storage. The basic algo-
rithm is the same: the block with the desired record is located on disk (via scan,
index structure or other means), the disk page is retrieved,the record is found,
update it performed, and the block is flushed back to disk.

4


