
. .
CSC 468 DBMS Organization Alexander Dekhtyar
. .

Index Structures

Overview

Index Structuresare supplemental data structures created and maintained bythe DBMS in order to speed up
query processing and data management. Index structures arestored on disk in exactly the same manner as
the relational data: each index structure is stored in a single file, the information there is broken into disk
blocks.

We will consider the following categories of index structures:

• Indexes on Sequential Files. Sequential files allow for efficient access to data only if there is a
efficient way to determine where the data is stored given a key. Index structures in this category
address this issue. Two classes of indexes,denseandsparseare considered.

• Secondary Indexes. Index structures for non-search key attributes in sequential files and/or for heap
files.

• B-trees. A more advanced way to organize indexing.

• Hash tables. An implementation of standard hash-table techniques in secondary storage.

Additional classes of indexes exist, such asinverted indexesused in Information Retrieval, but our con-
centration is on index structures used for storage and retrieval ofrelational data.

Indexes on Sequential Files.

Sequential Files store records ordered by values of a selectedsearch key.

If relation R is stored sequentially and attributeA is a search key, then in order to give a fast answer to
the querySELECT * FROM R WHERE A= x we need to know how to find the location in the disk file
for R of the records whose search key value isx.

Possibile solutions are:

Scan: If we have only the sequential file to rely on, we can scan the file from the beginning, reading each
page in turn, until we find the search key. The worst-case I/O complexity of such algorithm isn,
wheren is the number of pages in the disk file.

1



Dichotomy: A slightly better approach isdichotomy, which first reads the block in the middle of the file,
determines, which side of it, the key value should be, and continues splitting the appropriate region of
blocks into half until the necessary block is reached. This allows us to execute the query inO(log(n))
disk accesses.

Indexing: A separate index structure is built, storing the information about the locations of records with
specific key values. The index structure is much smaller thanthe data file, and its traversal can be
done faster. Once the desired data is found in the index, onlyrelevant pages are retrieved from the
data file. The I/O costs in this case will beO(m) + O(1) wherem << n is the size of the index file.

Two different types of index structures can be used in conjunction with sequential files:dense indexesand
sparse indexes.

Simple Indexes

A simple indexstructure is a sequence of records of the form(V alue, Location), whereV alue is the value
of thesearch keyof a relation stored in a sequential file, andLocation is the pointer to the location of the
record with this search key1.

The distinction between the two types of simple indexes,sparseanddensecan be described as follows:

Dense indexescontain information abouteverykey value in the relation, whereassparse in-
dexescontain information about only a subset of key values.

Dense indexesallow the DBMS to determineboth theexistanceand thelocation of a record in
the relation, given a key value, without accessing the sequential data file.

Sparse indexesallow the DBMS to determine thelocation of a record with a given key,if such
a record exists. Generally, accessing the sequential file is required to establish that no record
with a given key exists.

Dense Indexes

Dense indexesstore information abouteverykey in the data file.

The size of a record in an index file is typically much smaller than the size of a data record. If the
key is a single attribute, then we can store a single index filerecord insize(keyattribute) + 4 bytes,
if we only store thePageID of the disk page on which the record is located. (alternatively, if we use
(PageID,RecordNumber) pair, the size will besize(keyattribute) + 8).

This means thata single disk block can typically fit many more index records than data file records.

1Note, that, technically, bothV alue andLocation can be composite. If the search key includes more than one attribute,V alue

will consist of the list of values of all search key attributes. Location can be typically thought of as a(PageId,RecordNumber)
pair, wherePageId points to the page in the sequential file, andRecordNumber - to the position of the record on the page.

2



A typical dense index is shown in the figure below:

10
20
30
40
50
70

10
20
30

50
70

110
100
90

200
160
140

40

90
100
110
140
160
200

Sequential Data FileDense Index File

3



Sparse Indexes

Sparse indexesstore informationonly about the first key of each disk block.

Where dense indexes win mostly because of the difference in the record size between an index and a data
file, sparse indexes provide extra savings by storing only one (still small) record per disk page. This means
that sparse indexes arevery compact.

A typical sparse index is shown in the figure below:

4



10
20
30

Sequential Data File

50
70

110
100
90

200
160
140

40

220]

300

240
280

310
350

380
400
420

10
40
90

140

300
220

380

Sparse Index File

5



Index Structures for Keys with duplicate values

Bothdenseandsparseindexes can be adapted to deal with multiple key occurrencesin the relation. The key
principles behind these index structures stay:

• Dense indexesinclude one record foreach unique key value.

• Sparse indexesinclude one record foreach disk block.

This can be illustrated on the following example.

10

40
50

505050

50
50
50

30

30
20

50
60
70

80
80

80

100

90
100

10

20

30

40
50

60

70

80

90

100

10

30

50

50

50

50

50
80

90

Dense Index Data File Sparse Index

When retrieving information from indexes for data with duplicate keys the following needs to be observed

For dense indexes: Given a key valuex, records with this value will be stored between the locationpointed
by the desnse index record with keyx and the location pointed by the dense index record with the
next key value. This interval may span multiple disk pages.

For sparse indexes: Given a key valuex, to find records with this key in the data file, do the following:

• If index record with keyx exists, retrieve the block it points to, and the previous block. (If more
than one record for keyx exists, also retrieve all blocks those reccords point to).

6



• If there is no record with keyx, retrieve the block that precedes the first block where keys are
greater thanx.

Secondary Indexes

Secondary indexesare index structures that index the values of non-search keyattributes of the relation.

Secondary indexesare used to index heap files and to index sequential files on non-search key attributes.

A simple secondary indexconsists of pairs(AttributeV alue,RecordLocation). Secondary indexes
must be built to admit multiple keys. Because records with the same attribute value can be stored at different
locations in the file,simple secondary indexstores one index record for each tuple in the underlying relation.

An example of a secondary index is shown in Figure 1.

When retrieving from secondary indexa, we need to remember the following:

• Given key valuex, the records with this value can be stored anywhere on disk. In the worst-case
scenario, each block has exactly one record with this key, and therefore each block will have to be
read in turn.

Secondary index structures can be compacted a little bit. Here are some variations.

• Secondary index with indirection.Only one record per key is stored in the index. The pointer leads to
a page of pointers to locations of all records with given key value. See Figure 2.

• Postings File.Only one record per key is stored in the index. The record contains the key value and a
list of pointers to locations of all records with this key in the data file.

Note, that the record sizes in this index file arevariable. See Figure 3.

Index Maintenance

Any time an underlying data file is modified, the index structure may need to be modified appropriately.

An index file is an example of a sequential data file.

Therefore, the approach to insertion, deletion and modification into indexes is the same in general.

Notes:

• Index structures can be used during insertion of records into sequential data files to determine the
position where the record must be inserted.

• A new index recordmust be inserted into adense indexany time a record with a new key is added to
the relation.

7



40

90

10

100

20

100

20

20

10

20

20

20

20

30

40

50

90

80

40

50

100

100

90

90

80

30

20

50

40

50

Data FileSecondary Index

Figure 1: A Simple Secondary Index
8



• A new index recordmust be inserted into asparse indexany time a new disk page is created in the
data file.

• A new index recordmust be inserted into asecondary indexany time a new record is inserted into
the data file.

• Any time record insertion into a data file causessliding or creation of anoverflow page, i.e., any
time, records aremovedin the data file,index structures must be updated That is, pointers must be
updatedin some existing index records.

Action Dense Index Sparse Index Secondary Index
Create empty overflow block none none none
Delete empty overflow block none none none
Create empty sequential blocknone insert none
Delete empty sequential blocknone delete none
Insert record insert(?) update(?) insert
Delete record delete(?) update(?) delete
Slide record update update (?) update

“(?)” means “possibly.”

9



40

90

10

100

20

100

20

20

10

20

90

80

30

20

50

40

50

Data FileSecondary Index

30

40

100

90

80

50

Figure 2: Secondary index with indirection.
10



40

90

10

100

20

100

20

20

90

30

20

50

40

50

Data FileSecondary Index

10

20

80

30

40

50

80

90

100

Figure 3: Secondary index with postings.
11


