
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Index Structures: Part 2
B+-trees

B+-trees

Just as simple index structures,B+trees are designed to index the content of
existing database relations/data files in DBMS.

A B+-tree is a ballanced tree data structure defined as follows:

• Each node in aB-tree consists ofn key values andn + 1 pointers. Figure
below shows the node structure forn = 3. For simplicity, we will write that
a nodeN is a pair〈Keys[0..n], Pointers[0..n + 1]〉.

B+tree Node, n=3

Keys:

Pointers:

a b c

• B+-trees have three types of nodes:root, internal andleaf.

• Leaf nodes are constructed as follows:

– At least half of the key valueslots in each leaf node isnot empty.

– Given a leaf nodel = 〈Keys[], Pointers[]〉, if l.Keys[i] = a (not
empty) thenl.Pointers[i] contains a pointer to a record with key value
a. in the data file.

– l.Keys[i] <= l.Keys[i + 1] for all non-empty slots.

– The last pointer of the leaf node,l.Pointers[n + 1] points to the next
leaf node l′. If k is the number of non-empty key values inl, then
l.Keys[k] <= l′.Keys[1].

1



The structure of leaf nodes is illustrated below.

30 40 50

Data File

...
...

30

40

50

B+−tree
leaves

• Internal nodes have the following structure:

– Each internal node has at least half of its key value slots occupied.

– Given an internal nodeN = 〈Keys, Pointers〉, if N.Keys[i] = ai

is non-empty, thenN.Pointers[i] 6= NULL and points to a node in
the next level of theB+-tree. This node may be aleaf node, or another
internal node.

– If N.Pointers[i] = N ′, then forj ≤ n, if N ′.Keys[j] is not empty,
thenN ′.Keys[j] ≤ N ′.Keys[i].

Additionally, if i > 1, N ′Keys[j] ≥ N.Keys[i − 1].

– If N.Keys[n] = an is not empty, thenN.Pointers[n + 1] 6= NULL

points to a nodeN ′ in the next level of theB+-tree, and all nonempty
keysN ′.Keys[j] ≥ N.Keys[n].

The structure of internal nodes is shown below:

30 40 50

464442333010 20 54 60

B+tree: internal nodes

• Root node. The structure of the root node of theB+-tree is similar to the
structure of the internal node, with the exception thatroot node may contain

2



fewer than half of its key value slots occupied. Instead, at least 2 pointers
(and 1 key) in the root node must be non-empty.

A simpleB+-tree for n = 3 is shown below:

5 10 15 20 25 35 40 55 60 65 70 75 85 90

20 35 70 85

55

B+-trees and Indexing Database Records

B-trees, andB+-trees are ballanced trees with a guarantee that beyond the root
node, all other nodes are rather dense (i.e., filled at 50% or more).

The search algorithm overB-trees andB+-trees is straightforward:

• given a key valueX, starting at the root node, traverse the key values stored
in the node, until a valueY > X is discovered at some sloti.

• Retrieve the nodePointers[i].

• If all non-empty key values in the node are smaller thanX, follow the last
non-empty pointer.

B+-trees are an adaptation of the standardB-tree structure to the secondary stor-
age. Each node of aB+-tree has the size ofone disk block. The data portion of
the disk block is broken inton (Key, Pointer) pairs, and an additional,n + 1st
pointer is stored at the end of the page.

The second distinction ofB+-trees is the fact that allleaf nodes are linkes with
each other. This makes it easy to search for keys in a sequence: searching for
a starting position is done by traversing the tree, but afterthe first leaf node is

3



retrieved, one can follow then + 1st pointer on the page, to retrieve the next leaf
node.

Note: we also note that while the standard structure of aB+-tree assumes only a
single-linked list ofleaf nodes, we can also store a pointer to previousleaf node
in the block header of eachleaf node page.

B+-trees can be used to store any of the index structures discussed before:

• Dense indexes on sequential files. Theleaf nodes form the dense index,
while the upper layers provide fast navigation to the necessary key.

• Sparse indexes on sequential files. Same as above,leaf nodes form the
sparse index.

• Secondary indexes. Leaf nodes present all key occurrences in sorted order.

• Indexes with duplicate keys. B+-trees need to be slightly updated to allow
for seamless indexing of data with duplicate keys. In particular, the meaning
of a key in an internal node has to change somewhat.

How many layers?

Suppose our disk blocks contain 4Kb each, 4096 bytes. Let ourkey values be
integers, 4 bytes long and let our pointers be 8 bytes in size.

How many key values can we store in a single node?

We know that12n + 8 + HeaderSize ≤ 4096. If we takeHeaderSize to be
80 bytes, this would lead to12n = 4008, or

n = 334.

A one-level B + −tree (root and leaves) can thus index3342 = 111, 556
records. A two-levelB +−tree (root, internal layer and leaves) can index3343 =
37, 259, 704 records.

4


