
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Query Execution: Part 3

One-Pass Algorithms

I. One-pass algorithms.

I.1. Tuple-at-a-time, unary operations.

• Selection

• Projection

I.2. Full-relation, unary operations.

• Duplicate Elimination

• Grouping

I.3. Full-relation, binary operations.

• Union (set)

• Intersection (set, bag)

• Difference (set, bag)

• Product

• Join

Tuple-at-at-time Algorithms

Operations: Selection, Projection.

Projection operation requires each tuple in a relation to be accessed and manip-
ulated.

Selection operation may require access to each tuple.

The algroithms are as follows:

1



Algorithm OnePassSelection(R, Condition)

Open(R); // start the iterator

//main loop
do

t := GetNext(R); // get next tuple
if (CheckCondition(Condition, t) == true) output t; //check condition

while t is NOT EMPTY;

Close(R);

end Algorithm

Algorithm OnePassProjection(R, AttList)

Open(R); // start the iterator

//main loop
do

t := GetNext(R); // get next tuple
if (t is NOT EMPTY) // if next tuple exists
{ t’ = Project(AttList, t); // perform projection
output t’;

}
while t is NOT EMPTY;

end Algorithm

The algorithms utilize theiterators discussed earlier for performing a fulltable-
scan of the relation and providing tuple-by-tuple access to the tuples.

Evaluation

Constraints None
I/O Cost B(R)

Memory Footprint O(1)

Notes: These are universal algorithms - they can can be used with relations of
any size. The required memory is just 1 disk block, as the iterators/table-scan
process can load data one block at a time.

Algorithms for Unary Full-Relation Operations

Duplicate Elimination

If relation R can (almost) fit in main memory we can use the following one pass
algorithm to computeδ(R).

2



Algorithm OnePassDuplicateElimination(R)

Open(R); // start the iterator

Initialize Hash Table HashTable in M-1 blocks of the buffer;

do
t:= GetNext(R);

// if t is in the hash table, skip it
// otherwise, insert it
if (seek(t,HashTable) == false) insert(t, HashTable);

while t is NOT EMPTY;
output HashTable; // The hash table contains the restult

Close(R);

end Algorithm

We useM −1 blocks of the buffer for a data structure (hash table in the example
above, also can be a binary search tree or another data structure) which stores all
unique tuples found inR. When a tuple is read fromR we test if it has been ob-
served, but searching for it in the data structure. If it is there, we skip it, otherwise
we insert it.

Evaluation

Constraints B(δ(R)) ≤ M)

I/O Cost B(R)

Memory Footprint M

Notes: The algorithm can be used if all unique tuples inR, i.e., the result of
δ(R) fits in M − 1 pages. We simplfy this condition toB(δ(R)) ≤ M for large
enoughM . The algorithm uses the full buffer - one page for the iterator, andM−1
pages to store the result.

Grouping and Aggregation

The idea behind the grouping operationγL is simple. The result of this operation
is a collection of tuples, one tuple per group. We scan the relationR, and each time
a new group needs to be created we put a container tuple for it in the buffer. For
each tuple we identify which group the tuple belongs to, and modify the container
according to the aggregation operations needed to perform.

The overall algorithm is as follows.

Algorithm OnePassGrouping(R, AttList)

Open(R); // start the iterator

3



// the hash table will contain tuple containers for groups
Initialize Hash Table HashTable in M-1 blocks of the buffer;

do
t:= GetNext(R);

// check to see if a new group tuple needs to
// be added
group := FindGroup(t,AttList,HashTable);
if (group == -1) // if no group is found

{ group := insertNewGroup(t,AttList,HashTable);} // create a new group

aggregate(group, t, AttList);// modify the contents of group’s tuple according
// the desired aggregate operations

while t is NOT EMPTY;

output HashTable; // The hash table contains the restult

Close(R);

end Algorithm

For each aggregate that needs to be computedaggregate() function douce
the following:

MIN, MAX compare current value in the group tuple
with the value in the tuplet,
record the smaller (larger) of the two ingroup

COUNT add one to the counter
SUM add the value fromt to the value ingroup
AVG maintain both the sum and the count values, change as above

Evaluation

Constraints B(γL(R)) ≤ M)

I/O Cost B(R)

Memory Footprint M

Full-relation, binary operations

The overall idea behind all these algorithms is the same. Almost all one-pass algo-
rithms for binary operations work as follows:

1. Load the smaller of the two relations into main memory (typically store it in
a data structure that allows for easyseek() operation).

2. Scan the larger relation, one block at a time (using iterators for tuple-by-tuple
access), check the relationship between current tuple and the tuples from the
smaller relation, form output.

4



The scan requires just 1 block, so, the remaining buffer space, M − 1 blocks,
can be allocated to storage of the smaller relation.

Union

Bag Union operation is very simple. Because no duplicate eliminationis needed,
it can be achieved, by simply scanning and outputing the firstrelation, followed by
scanning and outputing the second one.

Algorithm BagUnion(R, S)

Open(R); // first, scan R
while not EOF(R)

{ t := GetNext(R);
output t;

}
Close(R);

Open(S); // next, scan S
while not EOF(S)

{ t:= GetNext(S);
output t;

}
Close(S);

end Algorithm

Set Union is somewhat more complex, as it requires duplicate elimination “on
the go”. The algorithm, thus is similar to the one-pass algorithm for γ(R), except,
the starting point is, the smaller of the two relations is loaded in the buffer.

Algorithm SetUnion(R,S)

// we assume that B(R) > B(S)

Initialize HashTable;
Load S into HashTable; // relation S is hashed in main memory;

Open(R); // start the iterator on R
do
t = GetNext(R);
if (seek(t, HashTable) == false) output t; // if t is not in S output it

while t is NOT EMPTY;

Close(R);

output HashTable; // output S
end Algorithm

5



Notes: Only one disk block is needed for the iterator onR, therefore,S can be
hashed in all remaining blocks. The iterator is used to compute R − S, while the
final output HashTable; operation, addsS: (R − S) ∪ S = R ∪ S.

Evaluation

Algorithm BagUnion SetUnion
Constraints none B(S) ≤ M)

I/O Cost B(R) + B(S)

Memory Footprint O(1) M

Intersection

Set Intersection operation can be implemented using a modification of theSetUnion()
algorithm.

Algorithm SetIntersection(R,S)

// we assume that B(R) > B(S)

Initialize HashTable;
Load S into HashTable; // relation S is hashed in main memory;

Open(R); // start the iterator on R
do
t = GetNext(R);
if (seek(t, HashTable) == true) output t; // if t is in S output it

while t is NOT EMPTY;

Close(R);

end Algorithm

Notes: There are two differences betweenSetUnion andSetIntersection. First,
the hash table is not returned. Second,t is output when it is found in the hash table.

Bag Intersection algorithm is more tricky. Here, we need to keep track of the
count for each tuple. The algorithm works in two steps. First, for the smaller
relation,S, we perform an analog of the one-pass duplicate eliminationalgorithm,
except, we store count of number of occurrences for each tuple. On the second
step, we scanR, and any time we detect a tuple in the hash table, we output it,and
decrease its counter.

Algorithm SetIntersection(R,S)
// we assume that B(R) < B(S)

// Step 1: initialize the hash table for S

Open(S); // start the iterator

6



Initialize Hash Table HashTable in M-1 blocks of the buffer;

do
t:= GetNext(S);

// if t is in the hash table, skip it
// otherwise, insert it

if (seek(t,HashTable) == false)
{insert(t, HashTable)

counter[t] := 1;}
else // tuple t is already in the hash table

counter[t] := counter[t] + 1; // increment the counter
while t is NOT EMPTY;
Close(S);

// Step 2: scan R, compute intersection

Open(R);
do
t := GetNext(R);
if (seek(t, HashTable) == true) // t is found in HashTable

{
output t;

counter[t] := counter[t] - 1; // decrement the counter
// if the counter drops to 0

if (counter[t] == 0) delete(t, HashTable); //remove the tuple
}

while t is NOT EMPTY;
Close(R);

end Algorithm

Evaluation

Algorithm BagIntersection SetIntersection
Constraints B(S) ≤ M

I/O Cost B(R) + B(S)

Memory Footprint M

Notes: For SetIntersection algorithm the constraint is somewhat differ-
ent. On one hand, the true condition isγ(B(S)) ≤ M − 1. On the other hand,
there is an overhead incurred by the algorithm, because it has to store counters. But
B(S) ≤ M is a reasonable approximation.

Difference

Difference is not commutative. So, we need two one-pass algorithms: one for
R−S, whenB(R) > B(S) and one forR−S whenB(R) < B(S), for both bag
and set differences.

Set Difference algorithms. For the caseB(R) > B(S) a modification of

7



SetUnion will work. As we saw above, this algorithm computesR − S within
the main iterator loop. For the case ofB(R) < B(S), we need to storeR in main
memory, and change the processing slightly.

Algorithm SetDifferenceS(R,S)

// we assume that B(R) > B(S)

Initialize HashTable;
Load S into HashTable; // relation S is hashed in main memory;

Open(R); // start the iterator on R
do
t = GetNext(R);
if (seek(t, HashTable) == false) output t; // if t is not in S output it

while t is NOT EMPTY;

Close(R);
end Algorithm

Algorithm SetDifferenceR(R,S)

// we assume that B(R) < B(S)

Initialize HashTable;
Load R into HashTable; // relation R is hashed in main memory;

Open(S); // start the iterator on S
do
t = GetNext(S);
if (seek(t, HashTable) == true) delete(t, HashTable);

// if t is in R, delete it from the hash table
while t is NOT EMPTY;

Close(S);
output HashTable;

end Algorithm

ForBag Difference we must use the same trick as forBag Intersection — store
the counters for each tuple.

Algorithm SetDifferenceS(R,S)
// we assume that B(R) < B(S)

// Step 1: initialize the hash table for S

Open(S); // start the iterator

8



Initialize Hash Table HashTable in M-1 blocks of the buffer;

do
t:= GetNext(S);

// if t is in the hash table, skip it
// otherwise, insert it

if (seek(t,HashTable) == false)
{insert(t, HashTable)

counter[t] := 1;}
else // tuple t is already in the hash table

counter[t] := counter[t] + 1; // increment the counter
while t is NOT EMPTY;
Close(S);

// Step 2: scan R, compute difference

Open(R);
do
t := GetNext(R);
if (seek(t, HashTable) == true) // t is found in HashTable

{
counter[t] := counter[t] - 1; // decrement the counter

// if the counter drops to 0
if (counter[t] == 0) delete(t, HashTable); //remove the tuple

}
else // t is NOT / NO LONGER in hash table

{output t;}

while t is NOT EMPTY;
Close(R);

end Algorithm

Algorithm SetDifferenceR(R,S)
// we assume that B(R) > B(S)

// Step 1: initialize the hash table for R

Open(R); // start the iterator

Initialize Hash Table HashTable in M-1 blocks of the buffer;

do
t:= GetNext(R);

// if t is in the hash table, skip it
// otherwise, insert it

if (seek(t,HashTable) == false)
{insert(t, HashTable)

counter[t] := 1;}

9



else // tuple t is already in the hash table
counter[t] := counter[t] + 1; // increment the counter

while t is NOT EMPTY;
Close(R);

// Step 2: scan S, compute difference

Open(S);
do
t := GetNext(S);
if (seek(t, HashTable) == true) // t is found in HashTable

{
counter[t] := counter[t] - 1; // decrement the counter

// if the counter drops to 0
if (counter[t] == 0) delete(t, HashTable); //remove the tuple

}

while t is NOT EMPTY;
Close(R);

output HashTable;

end Algorithm

Evaluation

Algorithm BagDifferenceS BagDifferenceR SetDifferenceS SetDifferenceR
Constraints B(S) ≤ M B(R) ≤ M B(S) ≤ M B(R) ≤ M

I/O Cost B(R) + B(S)

Memory Footprint M

Product

Product is a simple but time-consuming operation. A one-pass algorithm for prod-
uct is striaghtforward. One relation is read into the buffer, the second relation is
scanned and for each tuple from the first relation and the current tuple from the
second, their product is formed and output.

Algorithm OnePassProduct(R,S)

// assume B(R) > B(S)

Read S into main memory;

Open(R);
do
t := GetNext(R);
if (t is NOT EMPTY)

for each t’ in S output (t,t’);

10



while t is NOT EMPTY;
Close(R);

end Algorithm

Evaluation

Constraints B(S) ≤ M

I/O Cost B(R) + B(S)

Memory Footprint M

Join

The algorithms below work for natural join and equijoins. They can be extended
easily to arbitrary join conditions.

One-pass algorithm for join can be build out of one-pass algorithm for product.
Here, instead of outputing every pair of tuples, we will firsttest, if the join condition
is satisfied.

Algorithm NaiveOnePassJoin(R,S, JoinCondition)

// assume B(R) > B(S)

Read S into main memory;

Open(R);
do
t := GetNext(R);
if (t is NOT EMPTY)

for each t’ in S
if SatisfyJoinCondition(t,t’, JoinCondition) output Join(t,t’);

while t is NOT EMPTY;
Close(R);

end Algorithm

This algorithm is naive, as it still requires checking everypair of tuples. By
arrangingS in main memory indexed by the values from theJoinCondition,
we can speed up memory computations.

Algorithm OnePassJoin(R,S, JoinCondition)

// assume B(R) > B(S)
Initialize Index;
Read S into Index, index on attributes from JoinCondition;

11



Open(R);
do
t := GetNext(R);
if (t is NOT EMPTY)

{ T = seek(Index, t); // find in Index, tuples with
// values of JoinCondition equal

// to those in tuple t, return result
// as set T

for each t’ IN T output Join(t,t’,JoinCondition);
}

while t is NOT EMPTY;
Close(R);

end Algorithm

Evaluation

Algorithm NaiveOnePassJoin OnePassJoin
Constraints B(S) ≤ M

I/O Cost B(R) + B(S)

Memory Footprint M

12


