CSC 468 DBMS Implementation

Alexander Dekhtyar'

Query Execution: Part 3

One-Pass Algorithms

I. One-pass algorithms.

I.1. Tuple-at-a-time, unary operations.
e Selection
e Projection
[.2. Full-relation, unary operations.
e Duplicate Elimination
e Grouping
I.3. Full-relation, binary operations.
Union (set)
Intersection (set, bag)
Difference (set, bag)
Product
e Join

Tuple-at-at-time Algorithms

Operations. Selection, Projection.

Projection operation requires each tuple in a relation to be accessethanip-

ulated.
Selection operation may require access to each tuple.

The algroithms are as follows:

Al gorithm OnePassSel ecti on(R, Condition)
pen(R); /1 start the iterator
[/ main | oop

do
t := CetNext(R); [/ get next tuple

i f (CheckCondition(Condition, t) == true) output t; //check condition

while t is NOT EMPTY;
d ose(R);

end Al gorithm

Al gorithm OnePassProjection(R, AttList)
Open(R); [l start the iterator

[/ main | oop

do
t := CGetNext (R); [l get next tuple
if (t is NOT EMPTY) /1 if next tuple exists
{ t' = Project(AttList, t); /1 performprojection
out put t’;
}

while t is NOT EMPTY;

end Al gorithm

The algorithms utilize thé&erators discussed earlier for performing a faéble-
scan of the relation and providing tuple-by-tuple access to thets.

Evaluation
Constraints None
I/O Cost B(R)
Memory Footprint | O(1)

Notes. These are universal algorithms - they can can be used witioes of
any size. The required memory is just 1 disk block, as thetibes/table-scan
process can load data one block at a time.

Algorithmsfor Unary Full-Relation Oper ations
Duplicate Elimination

If relation R can (almost) fit in main memory we can use the following onespas
algorithm to computé(R).

Al gori t hm OnePassDupl i cat eEl i mi nati on(R)
pen(R); // start the iterator
Initialize Hash Tabl e HashTable in M1 bl ocks of the buffer;

do
t:= GetNext(R);
[/ if t is in the hash table, skip it
/1l otherwi se, insert it
if (seek(t,HashTable) == fal se) insert(t, HashTable);

while t is NOT EMPTY,
out put HashTabl e; /1 The hash table contains the restult

G ose(R);

end Al gorithm

We useM — 1 blocks of the buffer for a data structure (hash table in ttzrgle
above, also can be a binary search tree or another dataus&uethich stores all
unique tuples found irR. When a tuple is read fromk we test if it has been ob-
served, but searching for it in the data structure. If it &ré) we skip it, otherwise
we insert it.

Evaluation
Constraints B(06(R)) < M)
I/O Cost B(R)
Memory Footprint | M

Notes. The algorithm can be used if all unique tuplesini.e., the result of
d(R) fitsin M — 1 pages. We simplfy this condition tB(5(R)) < M for large
enoughM. The algorithm uses the full buffer - one page for the itetatind M — 1
pages to store the result.

Grouping and Aggregation

The idea behind the grouping operatign is simple. The result of this operation
is a collection of tuples, one tuple per group. We scan tlaiogl R, and each time
a new group needs to be created we put a container tuple fotheibuffer. For
each tuple we identify which group the tuple belongs to, andify the container
according to the aggregation operations needed to perform.

The overall algorithm is as follows.

Al gorithm OnePassG oupi ng(R, AttList)

pen(R); // start the iterator

/! the hash table will contain tuple containers for groups
Initialize Hash Tabl e HashTable in M1 bl ocks of the buffer;

do

= CGet Next (R);

/! be added

/'l check to see if a new group tuple needs to

group : = FindGoup(t, AttList,HashTabl e);

if (group ==
{ group :

1)

/1 if no group is found

i nsert NewGroup(t, AttList, HashTable);} // create a new group

aggr egat e(gr oup,

t,

while t is NOTI EMPTY;

out put HashTabl e;

G ose(R);

end Al gorithm

AttList);// nodify the contents of group’s tuple according
/1l the desired aggregate operations

// The hash table contains the restult

For each aggregate that needs to be compatggt egat e() function douce

the following:

M N, MAX compare current value in the group tuple
with the value in the tuplé,
record the smaller (larger) of the twogr oup
COUNT add one to the counter

SUM add the value from to the value ingr oup
AVG maintain both the sum and the count values, change as above
Evaluation
Constraints B(vp(R)) < M)
I/O Cost B(R)
Memory Footprint | M

Full-relation, binary operations

The overall idea behind all these algorithms is the same.o&trall one-pass algo-
rithms for binary operations work as follows:

1. Load the smaller of the two relations into main memoryi@gfhy store itin
a data structure that allows for easgek() operation).

2. Scanthe larger relation, one block at a time (using ibesdor tuple-by-tuple
access), check the relationship between current tupleheniples from the
smaller relation, form output.

The scan requires just 1 block, so, the remaining bufferespac — 1 blocks,
can be allocated to storage of the smaller relation.

Union

Bag Union operation is very simple. Because no duplicate eliminagameeded,
it can be achieved, by simply scanning and outputing therétation, followed by
scanning and outputing the second one.

Al gorithm BagUni on(R, S)

Open(R); [l first, scan R
whil e not EOF(R)
{t = CetNext(R);
out put t;

}
d ose(R);

Open(S) ; /[l next, scan S
whil e not EOCF(S)
{ t:= GetNext(S);
out put t;

}
Cl ose(S);

end Al gorithm

Set Union is somewhat more complex, as it requires duplicate elingndbn
the go”. The algorithm, thus is similar to the one-pass atlgar for (R), except,
the starting point is, the smaller of the two relations isliedin the buffer.

Al gorithm Set Uni on(R, S)
/1 we assume that B(R) > B(S)

Initialize HashTabl e;
Load S into HashTable; // relation S is hashed in main nmenory;

Open(R); /[l start the iterator on R
do
t = GetNext(R);

if (seek(t, HashTable) == false) output t; // if t is not in S output

while t is NOT EMPTY;
Cl ose(R);

out put HashTable; // output S
end Al gorithm

Notes: Only one disk block is needed for the iterator Bntherefore,S can be
hashed in all remaining blocks. The iterator is used to casmpu— S, while the
final out put HashTabl e; operation, add$: (R—S)US=RUS.

Evaluation

Algorithm BagUni on | Set Uni on
Constraints none B(S) < M)
I/O Cost B(R) + B(S)
Memory Footprint | O(1) | M

| nter section

Set Intersection operation can be implemented using a modification oSeeUni on()
algorithm.

Al gorithm Setlntersection(R, S)
/1 we assume that B(R) > B(S)

Initialize HashTabl e;
Load S into HashTable; // relation S is hashed in main nenory;

Open(R); /1 start the iterator on R
do

t = GetNext(R);

if (seek(t, HashTable) == true) output t; // if t is in S output it
while t is NOT EMPTY;

Cl ose(R);

end Al gorithm

Notes: There are two differences betwegatUnion andSetintersection. First,
the hash table is not returned. Secand; output when it is found in the hash table.

Bag Intersection algorithm is more tricky. Here, we need to keep track of the
count for each tuple. The algorithm works in two steps. Fifwt the smaller
relation, .S, we perform an analog of the one-pass duplicate eliminatgarithm,
except, we store count of number of occurrences for eacle.tuph the second
step, we sca?, and any time we detect a tuple in the hash table, we outpardt,
decrease its counter.

Al gorithm Setl ntersection(R,S)
/1 we assunme that B(R) < B(S)

/[l Step 1: initialize the hash table for S

Open(S); /! start the iterator

Initialize Hash Tabl e HashTable in M1 bl ocks of the buffer;

do
t:= GetNext(S);
/1 if t is in the hash table, skip it
/] otherwi se, insert it
if (seek(t,HashTable) == fal se)
{insert(t, HashTabl e)

counter[t] := 1;}
else // tuplet is already in the hash table
counter[t] := counter[t] + 1; // increnent the counter
while t is NOT EMPTY;
C ose(S);

/1l Step 2: scan R, conpute intersection

Open(R);
do
t .= GetNext(R);
if (seek(t, HashTable) == true) // t is found in HashTable

{
out put t;
counter[t] := counter[t] - 1; /1l decrement the counter
/1 if the counter drops to O
if (counter[t] == 0) delete(t, HashTable); //renpve the tuple
}
while t is NOT EMPTY;
d ose(R);
end Al gorithm
Evaluation
Algorithm Bagl ntersection \ Set I ntersection
Constraints B(S)<M
I/O Cost B(R) + B(S5)
Memory Footprint M

Notes: For Set | nt er sect i on algorithm the constraint is somewhat differ-
ent. On one hand, the true conditiomiéB(S)) < M — 1. On the other hand,
there is an overhead incurred by the algorithm, becauss iichstore counters. But
B(S) < M is areasonable approximation.

Difference

Difference is not commutative. So, we need two one-passritigts: one for
R —S,whenB(R) > B(S) and one fotkR — S whenB(R) < B(S), for both bag
and set differences.

Set Difference algorithms. For the caseB(R) > B(S) a modification of

Set Uni on will work. As we saw above, this algorithm comput&s— S within
the main iterator loop. For the case BfR) < B(S), we need to stor& in main
memory, and change the processing slightly.

Al gorithm SetDi fferenceS(R, S)
/1 we assune that B(R) > B(S)

Initialize HashTabl e;
Load S into HashTable; // relation S is hashed in main nenory;

Open(R); /]l start the iterator on R
do

t = GetNext(R);

if (seek(t, HashTable) == false) output t; // if t is not in S output it
while t is NOT EMPTY;

G ose(R);
end Al gorithm
Al gorithm SetDi fferenceR(R, S)
/1 we assume that B(R) < B(S)

Initialize HashTabl e;
Load R into HashTable; // relation Ris hashed in main nenory;

Qpen(S); /[l start the iterator on S
do
t = GetNext(S);
if (seek(t, HashTable) == true) delete(t, HashTable);
// if t isinR delete it fromthe hash table
while t is NOT EMPTY;

G ose(S);
out put HashTabl e;

end Al gorithm

ForBag Difference we must use the same trick as f8ag I ntersection — store
the counters for each tuple.

Al gorithm Set Di fferenceS(R, S)
/1 we assunme that B(R) < B(S)

/[l Step 1: initialize the hash table for S

Open(S); /Il start the iterator

Initialize Hash Tabl e HashTable in M1 bl ocks of the buffer;

do
t:= GetNext(S);
/1 if t is in the hash table, skip it
/] otherwi se, insert it
if (seek(t,HashTable) == fal se)
{insert(t, HashTabl e)

counter[t] := 1;}
else // tuplet is already in the hash table
counter[t] := counter[t] + 1; // increnent the counter
while t is NOT EMPTY;
C ose(S);

/1l Step 2: scan R, conpute difference

Open(R);
do
t .= GetNext(R);
if (seek(t, HashTable) == true) // t is found in HashTable

{
counter[t] := counter[t] - 1; /1 decrement the counter
[/l if the counter drops to O
if (counter[t] == 0) delete(t, HashTable); //renpve the tuple
}
else // t is NOT / NO LONGER in hash table

{out put t;}

while t is NOT EMPTY;
d ose(R);

end Al gorithm

Al gorithm SetDi fferenceR(R, S)
/1 we assunme that B(R) > B(S)

/[l Step 1: initialize the hash table for R
Open(R); // start the iterator
Initialize Hash Tabl e HashTable in M1 bl ocks of the buffer;

do
t:= GetNext(R);
[l if t is in the hash table, skip it
/] otherwi se, insert it
if (seek(t,HashTable) == fal se)
{insert(t, HashTabl e)
counter[t] := 1;}

else // tuplet is already in the hash table
counter[t] := counter[t] + 1; [// increnent the counter
while t i s NOT EMPTY;
d ose(R);

/1l Step 2: scan S, conpute difference

Open(S);
do
t := GetNext(S);
if (seek(t, HashTable) ==true) // t is found in HashTable

{
counter[t] := counter[t] - 1; /1l decrenment the counter
/1 if the counter drops to O
if (counter[t] == 0) delete(t, HashTable); //remove the tuple
}
while t is NOT EMPTY;
G ose(R);
out put HashTabl e;
end Al gorithm
Evaluation
Algorithm BagDi f ferenceS | BagDi fferenceR | SetDi fferenceS | SetDi fferenceR
Constraints B(S)<M B(R) <M B(S)<M B(R) <M
/O Cost B(R) + B(S)
Memory Footprint M
Product

Product is a simple but time-consuming operation. A ones-pigorithm for prod-

uct is striaghtforward. One relation is read into the buftee second relation is
scanned and for each tuple from the first relation and theenutuple from the

second, their product is formed and output.

Al gorithm OnePassProduct (R, S)
/1 assune B(R) > B(S)

Read S into main nmenory;

Oen(R);
do
t .= CGetNext(R);
if (t is NOT EMPTY)
for each t’ in S output (t,t’);

10

while t is NOT EMPTY;
Cl ose(R);

end Al gorithm

Evaluation

Constraints B
I/O Cost B
Memory Footprint | M

Join

The algorithms below work for natural join and equijoins.eyltan be extended
easily to arbitrary join conditions.

One-pass algorithm for join can be build out of one-passrilga for product.
Here, instead of outputing every pair of tuples, we will fiest, if the join condition
is satisfied.

Al gorithm Nai veOnePassJoi n(R, S, Joi nCondi ti on)
/1 assunme B(R) > B(S)
Read S into main nmenory;

Oen(R);
do
t .= CGetNext(R);
if (t is NOT EMPTY)
for eacht’ in S
if SatisfyJdoinCondition(t,t’, JoinCondition) output Join(t,t’);

while t is NOT EMPTY;
Cl ose(R);

end Al gorithm

This algorithm is naive, as it still requires checking evesir of tuples. By
arrangingS in main memory indexed by the values from thei nCondi ti on,
we can speed up memory computations.

Al gorithm OnePassJoi n(R, S, Joi nCondi ti on)
/1 assunme B(R) > B(S)

Initialize | ndex;
Read S into I ndex, index on attributes from Joi nConditi on;

11

Open(R);
do
t := GetNext(R);
if (t is NOT EMPTY)
{ T = seek(Index, t); // find in Index, tuples with
/'l val ues of Joi nCondition equal
/] to those in tuple t, return result
/] as set T
for each t’ INT output Join(t,t’,JoinCondition);

}
while t is NOT EMPTY;
Cl ose(R);

end Al gorithm

Evaluation
Algorithm Nai veOnePassJoi n \ OnePassJoin
Constraints B(S)<M
I/O Cost B(R) + B(S5)
Memory Footprint M

12

