
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Query Execution

Nested Loop Algorithms

II. Nested loop algorithms.

• Join

Nested-Loop joins

One-pass join algorithm can only be used if one of the the relations is small enough
to fit in main memory.

If both relations are large, then, one pass will not be enough. However, we can
devise algorithms that read one of the two relations only once. This family of
algorithms is calledNested-Loop algorithms.

Tuple-based Nested-Loop Join

Assume we are computing natural joinR(X,Y ) ⊲⊳ S(Y,Z). Tuple-based nested-
loop join accesses relations in a tuple by tuple fashion, and for each pair of tuples
checks if the join condition holds. It can be represented as follows:

Algorithm TupleJoin(R,S)

for each s in S do
for each r in R do

if (s.Y == r.Y) output (r.X,r.Y,s.Z);

end Algorithm

We can build iterators based on tuple-based join.

1



Algorithm Open(R,S)
Open(S);
Open(R);
s: = GetNext(s); // set the first tuple from S

end Algorithm

Algorithm GetNext(R,S)

do
r:= GetNext(R);
if (NOT found) // if R is at the end, advance the tuple in S

{ Close(R);
s:= GetNext(S);

if (NOT found) return; // if at the end of S, return
Open(R); // restart R for the new tuple from S

}

while (s.Y != r.Y);

return (r.X, r.Y, s.Z); // return the next joined tuple

end Algorithm

Algorithm Close(R,S)
Close(R);
Close(S);

end Algorithm

Block Nested-Loop Join

Tuple-based nested-loop join “pretends” to load tuples one-by-one into main mem-
ory. If it is allowed to proceed this way, its cost isO(T (R) · T (S) — very high.

Block Nested-Loop Join reads data in blocks to fill as much main memory as
possible. This allows for computations of large portions ofthe final join without
any extra I/O manipulation.

Let us assume thatB(R) > B(S) > M , i.e., neitherR norS fits main memory.
Theblock nested-loop join approach is as follows:

• BreakS into “chunks” of sizeM − 1 each1.

• organize the algorithm as a nested loop.

• The outter loop loads the next chunk fromS into main memory.

• The inner loop scansR and joins tuples fromR with tuples fromS.

1The last chunk may have a smaller size.

2



The pseudocode for this algorithm is below.

Algorithm BlockNestedLoopJoin(R,S)

NumChunks := (B(S) div (M-1)) + 1; // compute the number of chunks

for i = 1 to NumChunks do
read M-1 blocks of S into buffer; // load next chunk of S
index these blocks on S.Y; // index it

for j = 1 to B(R) do // read next block from R
read block Block_j from R;
for each tuple r in Block_j do

for each tuple s in main memory, s.t. s.Y == r.Y do // use indexing to find
output (r.X, r.Y, s.Z); // these tuples

end for;
end for;

end Algorithm

Evaluation

Algorithm TupleJoin BlockNestedLoopsJoin
Constraints NONE!

I/O Cost T (R) · T (S) O
(

B(S)·B(R)
M

)

Memory Footprint O(1) M

Notes. For the tuple nested-loop join, we provide the worst-case estimate. For
the block nested-loop join, the actual estimate of I/O costsis B(S) + B(S)·B(R)

M−1 .
This formula explains why the smaller relation should be in theoutter loop.

3


