
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Query Execution

Two-Pass Algorithms

1. Two-pass algorithms.

(a) Sort-based.

(b) Hash-based.

Two-pass algorithms for relational algebra operations areapplicable when partic-
ipating relations do not fit in main memory. Two-pass algorithms arenot universal
(see constraints below), but are widely applicable. They also extend to multi-pass
algorithms in a natural manner.

Sort-based Algorithms

All two-pass sort-based algorithms have the same basic structure:

Step 1. Segment-sort. Each relation participating in the operation is broken into
segments ofM pages each. Each segment is brought into main memory
and sorted based on anoperation-dependent sort key. Each segment is then
flushed to disk.

This step involves2 I/O operations per each disk page occupied by the data
files:

• 1 disk read: to bring the page into the buffer;

• 1 disk write: to flush the page to disk.

Step 2. Merge-sort. Each segment is allocated a slot in the buffer. All segments
are scanned in parallel, and a merge-sort algorithm identifies on each step
the tuple/tuples to be ”consumed”. The specifics of the relational algebra
operation then determine the action performed on the tuple(s) and the output.

This step involves1 I/O operation per each disk page: a disk read to bring
the page into the buffer.

1



For unary operations we have the following:

Cost: 3 · B(R)

Constraint: B(R) ≤ M2

Memory Use: M

For binary operations, except for joins, we have the following:

Cost: 3 · (B(R) + B(S))

Constraint: B(R) + B(S) ≤ M2

Memory Use: M

Specific algorithms are briefly discussed below.

Individual Operations

Duplicate Elimination. δ(R).

Step 1: Segment-Sort:The tuples are sorted on primary key R.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

1. The algorithm keeps track of the previous outputed tupletprev.

2. The tuplet with the smallest key value is selected and is removed from
the page it resides on. If it was the last tuple on the page, next page (if
one exists) from the same segment is read.

3. If t 6= tprev, outputt. (it will becometprev on the next iteration. If
t = tprev skip it.

Note: The algorithm leverages the fact that all merge-sort will process all copies
of the same tuple in a row.

Grouping and Aggregation. γL(R).

Step 1: Segment-Sort:The tuples are sorted onL.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

1. The algorithm keeps track of most recently seen values of attributesL

in tuplelprev. In addition, all aggregates requested by the operation for
the group defined bylprev are maintained in the tupleaggprev.

2. The tuplet with the smallest key value is selected and is removed from
the page it resides on. If it was the last tuple on the page, next page (if
one exists) from the same segment is read.

3. Let l = πL(t).

4. If l = lprev, updateaggprev.

5. If l 6= lprev, output (lprev, aggprev). Setlprev := l, and re-initialize
aggprev.

2



Set Union. R ∪ S.

Step 1: Segment-Sort:The tuples in both relations are sorted on their primary
keys.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

1. The algorithm keeps track of the previous outputed tupletprev.

2. The tuplet with the smallest key value is selected and is removed from
the page it resides on. If it was the last tuple on the page, next page (if
one exists) from the same segment is read.

3. If t 6= tprev, outputt. (it will becometprev on the next iteration. If
t = tprev skip it.

Note: Note that the set union algorithm looksexactly the sameas the duplicate
elimination algorithm. The only difference is that in the algorithm for union, we
run merge-sort step onboth R andS at the same time.

Intersection. R ∩ S.

Step 1: Segment-Sort:The tuples in both relations are sorted on their primary
keys.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

• For set intersection: for each next tuple turned up by the merge-
sort procedure (i.e., tuple with the next smallest value of primary key),
check to see if it appears in the other table. If yes, remove both from
their respective pages, and output the tuple. If no, remove the tuple
from the page, continue.

• Forbag intersection: for each tuples turned up by the merge-sort pro-
cedure, count the number of its appearances inR and the number of its
appearances inS. Output the tuple the number of times equal to the
minimum of the two numbers.

Difference. R − S.

Step 1: Segment-Sort:The tuples in both relations are sorted on their primary
keys.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

• For set difference: If the tuple with the smallest key is inS, remove
it, continue. If the tuple with the smallest key is inR, check to see if
it appears inS. If it does, remove it, continue. If it does not, output it,
remove it, continue.

3



• For bag difference: Skip tuples with the smallest key turned up by
merge-sort inS. For smallest key tuples inR, count the number of
occurrences of the tuple inR, count the number of occurrences of the
tuple inS, output the tuple the number of times equal to the difference
between the two numbers, if it is positive. Remove all tuples, continue.

Sort-based Joins

Joins differ from set operation in one observation:

The number of tuples from the two tables that share the join attributes
may exceed available main memory.

Because of this, one has to be more careful with sort-based join algorithms.

Smiple Sort-based Join

We present an algorithm that assumes natural join:R ⊲⊳ S. All other join variants
can be computed in the same manner.

This version of the alrogithm presorts bothR andS, and thus requires only 2
blocks in the buffer for the stage 2 scan. The remaining spacecan be used in
processing.

Sort. Both R andS are sorted using a two-pass merge-sort algorithm. The sort is
performed based on the join attributes.

Merge-Join. Merge-sortR andS. This involves using two buffer blocks to scan
R andS. On each step, do the following.

1. Find the tuple with the current smallest sort key valuek. If it does not
appear in the other relation, remove it, continue.

2. If tuples with sort key valuek are found in both relations, read into the
buffer all tuples fromR andS with sort key valuek.

3. Perform memory-resident join on tuples with sort keyk from R andS.
Output all tuples resulting from this operation.

4. Clean buffer for next iteration.

Step 1, sort, costs4·(B(R)+B(S)) I/O operations: each disk page is read twice
(once per merge-sort pass) and each disk page is flushed to disk twice (once per
merge-sort pass). Step 2, merge-join costsB(R) + B(S): each page is read once.

Cost: 5 · (B(R) + B(S))

Constraint: B(R) ≤ M2, B(S) ≤ M2,
no join key value has more thanM − 2 blocks of tuples
in R andS combined

Memory Use: M

The B(R), B(S) ≤ M2 are needed to perform merge-sort on step 1 in two
passes. The remaining constraint assures that we can perform join for every key
value in one pass.

4



More Efficient Join Algorithm (Sort-Join)

This algorithm is similar to the algorithms for other binaryoperations, is more
efficient, but also – more constrained.

R ⊲⊳ S.

Step 1: Segment-Sort:The tuples in bothR andS are sorted on join attributes.

Step 2: Merge-Sort: During theMerge-Sort step the following actions are per-
formed on each step:

1. Find the tuplet with the smallest valuek of the sort key. Find all tuples
in bothR andS with the valuek of the sort key.

2. Ouput the join of all tuples with the valuek of the sort key, remove
them from their respective disk pages, continue.

Cost: 3 · (B(R) + B(S))

Constraint: B(R) + B(S) ≤ M2,
no join key value has more thanM blocks of tuples
in R andS combined

Memory Use: M

If there are more tuples for a specific join key value, then nested-loops join can
be used to produce the join result for this value of the key.

5


