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Query Processing: Cost-based Query Optimization

Physical Query Plan Optimization

Logical query rewriting can produce one(or more candidate) query plan(s). Phys-
ical query plan optimization stage involves the following operations:

• Selection of the order and grouping in which associative-and-commutative
operations are to be executed.

• Selection of the appropriate algorithm for each logical query plan operator.

• Insertion of additional operations: scans, sorts, etc., needed for faster perfor-
mance.

• Selection of the means of passing results of one operation tothe next oper-
ation: through main memory buffer, through temporary disk storage or via
tuple-at-a-time iterators.

Basics of Cost Estimation

In order to be able to tell, which query plans are better, we need to be able to
predict/estimate the I/O costs of the plans. The I/O costs depend on two things:

• the specific chosen to execute each operation;

• (estimated) sizes of all intermediate results.

We know that given the sizes of the input relations, we can estimate the I/O
costs of each execution algorithm. We, thus, would like to have an approach to
estimation of sizes of intermediate results which has the following properties:

1. It yields accurate estimates (Accuracy);

1



2. It is easy to compute (Efficiency);

3. It is logically consitent: the estimates do not depend onhow the interme-
diate result was computed, only onwhat the intermediate result looks like
(Consistency)

Size estimation is a heuristic process. Some standard apporaches are described
below.

Projection

Let R be a relation, and consider the operationπL(R).

Projection operation does not remove tuples from the relation. However, the size
of each tuple shrinks1.

Let m be the size of a tuple inR, andm′ be the size of the tuple inπL(R). m′

can be computed in a straightforward manner fromm, knowing the schema ofR.

Then,B(πL(R)) can be estimated as follows:

B(πL(R)) =
m′

m
B(R).

Selection

Case 1: σA=c(R).

This operation will select only the tuples inR for which the value of attributeA
is c. There areV (R,A) different values of the attributeA in R, so, we can estimate
the number of tuples in the result as

T (σA=c(R)) =
T (R)

V (R,A)
.

Case 2: σA<c(R). (or any other inequality)

Standard estimation technique is

T (σA<c(R) =
T (R)

3
.

Another possible solution is as follows. LetV<(R,A, c) be the number of unique
values ofA in R that are less thanc. In this case, we can estimate

T (σA<c(R) =
T (R) · V<(R,A, c)

V (R,A)
.

Case 3: σA 6=c(R).

Standard estimate, applicable whenV (R,A) is very large is

1A more general version of projection operation also may allow for increase in size of the tuple,
but such increases can also be predicted fairly well.
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T (σA 6=c(R)) = T (R).

If V (R,A) is not large, whileT (R) is large, the following estimate may be
better:

T (σA 6=c(R)) = T (R) ·
V (R,A) − 1

V (R,A)
.

Case 4 σC1ANDC2
(R).

Treat this asσC1
(σC2

(R)), and cascade the estimates.

Case 4 σC1ORC2
(R).

We know that

max(T (σC1
(R)), T (σ(C2)(R))) ≤ T (σC1ORC2

(R)) ≤ T (σC1
(R))+T (σ(C2)(R)).

The left-hand-side estimate corresponds topositive correlation assumption, which
states that one condition subsumes the other completely. The right-hand-side esti-
mate corresponds to thenegative correlation/mutual exclusion assumption, which
states that no tuple can satisfy both conditions at the same time.

We can also construct an estimate for anindependence assumption:

T (σC1ORC2
(R)) = T (R)(1 − (1 −

1

V (R,A)
)2).

If we have better estimatesm1 andm2 for σC1
(R) andσC2

(R), this becomes:

T (σC1ORC2
(R)) = T (R)(1 − (1 −

m1

T (R)
)(1 −

m2

T (R)
)).

Union

For bag unionT (R ∪bag S) = T (R) + T (S).

For set union, we have

max(T (R), T (S)) ≤ T (R ∪ S) ≤ T (R) + T (S).

A possible estimate is the mid-point:

T (R ∪ S) = max(T (R), T (S)) +
T (R) + T (S)

2
.

Intersection

0 ≤ T (R ∩ S) ≤ min(T (R), T (S)).

One possible estimate is
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T (R ∩ S) =
min(T (R), T (S)

2
.

Another possibility is use formulas for natural join, asR ∩ S = R ⊲⊳ S. (joins
will be discussed later).

Difference

T (R) ≤ T (R − S) ≤ max(T (R) − T (S), 0).

A possible estimate is

T (R − S) = max(0, T (R) −
1

2
T (S)).

Duplicate Elimination

Generally speaking

T (δ(R)) = V (R, (A1, . . . , An),

if R’s schema isR(A1, . . . , An). However, this information may not be imme-
diately available.

One possible estimate (whenT (R) is very large) is

T (δ(R)) = Πi=1nV (R,Ai),

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

T (δ(R)) = min(0.5 · T (R),Πi=1nV (R,Ai)).

Grouping and Aggregatioon

Let L = (G1, . . . , Gk). If we knowV (R, (G1, . . . , Gk), then

T (γL(R) = V (R, (G1, . . . , Gk)).

Otherwise, we may estimate the number similarly to the case of duplicate elimi-
nation:

T (γL(R)) = Πi=1kV (R,Gi),

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

T (γL(R)) = min(0.5 · T (R),Πi=1kV (R,Gi)).
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