Query Processing: Cost-based Query Optimization

Physical Query Plan Optimization

Logical query rewriting can produce one (or more candidate) query plan(s). Physical query plan optimization stage involves the following operations:

- Selection of the order and grouping in which associative-and-commutative operations are to be executed.
- Selection of the appropriate algorithm for each logical query plan operator.
- Insertion of additional operations: scans, sorts, etc., needed for faster performance.
- Selection of the means of passing results of one operation to the next operation: through main memory buffer, through temporary disk storage or via tuple-at-a-time iterators.

Basics of Cost Estimation

In order to be able to tell, which query plans are better, we need to be able to predict/estimate the I/O costs of the plans. The I/O costs depend on two things:

- the specific chosen to execute each operation;
- (estimated) sizes of all intermediate results.

We know that given the sizes of the input relations, we can estimate the I/O costs of each execution algorithm. We, thus, would like to have an approach to estimation of sizes of intermediate results which has the following properties:

1. It yields accurate estimates (Accuracy);
2. It is easy to compute (Efficiency);
3. It is logically consitent: the estimates do not depend on how the intermediate result was computed, only on what the intermediate result looks like (Consistency)

Size estimation is a heuristic process. Some standard apporaches are described below.

Projection

Let R be a relation, and consider the operation $\pi_{L}(R)$.
Projection operation does not remove tuples from the relation. However, the size of each tuple shrinks ${ }^{1}$.

Let m be the size of a tuple in R, and m^{\prime} be the size of the tuple in $\pi_{L}(R) . m^{\prime}$ can be computed in a straightforward manner from m, knowing the schema of R.

Then, $B\left(\pi_{L}(R)\right)$ can be estimated as follows:

$$
B\left(\pi_{L}(R)\right)=\frac{m^{\prime}}{m} B(R)
$$

Selection

Case 1: $\sigma_{A=c}(R)$.
This operation will select only the tuples in R for which the value of attribute A is c. There are $V(R, A)$ different values of the attribute A in R, so, we can estimate the number of tuples in the result as

$$
T\left(\sigma_{A=c}(R)\right)=\frac{T(R)}{V(R, A)}
$$

Case 2: $\sigma_{A<c}(R)$. (or any other inequality)
Standard estimation technique is

$$
T\left(\sigma_{A<c}(R)=\frac{T(R)}{3}\right.
$$

Another possible solution is as follows. Let $V_{<}(R, A, c)$ be the number of unique values of A in R that are less than c. In this case, we can estimate

$$
T\left(\sigma_{A<c}(R)=\frac{T(R) \cdot V_{<}(R, A, c)}{V(R, A)}\right.
$$

Case 3: $\sigma_{A \neq c}(R)$.
Standard estimate, applicable when $V(R, A)$ is very large is

[^0]$$
T\left(\sigma_{A \neq c}(R)\right)=T(R)
$$

If $V(R, A)$ is not large, while $T(R)$ is large, the following estimate may be better:

$$
T\left(\sigma_{A \neq c}(R)\right)=T(R) \cdot \frac{V(R, A)-1}{V(R, A)}
$$

Case $4 \sigma_{C_{1} \text { AND }_{2}}(R)$.
Treat this as $\sigma_{C_{1}}\left(\sigma_{C_{2}}(R)\right)$, and cascade the estimates.
Case $4 \sigma_{C_{1} \mathrm{ORC}_{2}}(R)$.
We know that
$\max \left(T\left(\sigma_{C_{1}}(R)\right), T\left(\sigma\left(C_{2}\right)(R)\right)\right) \leq T\left(\sigma_{C_{1} \mathrm{OR} C_{2}}(R)\right) \leq T\left(\sigma_{C_{1}}(R)\right)+T\left(\sigma\left(C_{2}\right)(R)\right)$.
The left-hand-side estimate corresponds to positive correlation assumption, which states that one condition subsumes the other completely. The right-hand-side estimate corresponds to the negative correlation/mutual exclusion assumption, which states that no tuple can satisfy both conditions at the same time.

We can also construct an estimate for an independence assumption:

$$
T\left(\sigma_{C_{1} \mathrm{ORC}}^{2}(~(R))=T(R)\left(1-\left(1-\frac{1}{V(R, A)}\right)^{2}\right) .\right.
$$

If we have better estimates m_{1} and m_{2} for $\sigma_{C_{1}}(R)$ and $\sigma_{C_{2}}(R)$, this becomes:

$$
T\left(\sigma_{C_{1} \mathrm{OR} C_{2}}(R)\right)=T(R)\left(1-\left(1-\frac{m_{1}}{T(R)}\right)\left(1-\frac{m_{2}}{T(R)}\right)\right) .
$$

Union

For bag union $T\left(R \cup_{b a g} S\right)=T(R)+T(S)$.
For set union, we have

$$
\max (T(R), T(S)) \leq T(R \cup S) \leq T(R)+T(S)
$$

A possible estimate is the mid-point:

$$
T(R \cup S)=\max (T(R), T(S))+\frac{T(R)+T(S)}{2}
$$

Intersection

$$
0 \leq T(R \cap S) \leq \min (T(R), T(S))
$$

One possible estimate is

$$
T(R \cap S)=\frac{\min (T(R), T(S)}{2} .
$$

Another possibility is use formulas for natural join, as $R \cap S=R \bowtie S$. (joins will be discussed later).

Difference

$$
T(R) \leq T(R-S) \leq \max (T(R)-T(S), 0)
$$

A possible estimate is

$$
T(R-S)=\max \left(0, T(R)-\frac{1}{2} T(S)\right)
$$

Duplicate Elimination

Generally speaking

$$
T(\delta(R))=V\left(R,\left(A_{1}, \ldots, A_{n}\right)\right.
$$

if R 's schema is $R\left(A_{1}, \ldots, A_{n}\right)$. However, this information may not be immediately available.

One possible estimate (when $T(R)$ is very large) is

$$
T(\delta(R))=\Pi_{i=1} n V\left(R, A_{i}\right)
$$

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

$$
T(\delta(R))=\min \left(0.5 \cdot T(R), \Pi_{i=1} n V\left(R, A_{i}\right)\right)
$$

Grouping and Aggregatioon

Let $L=\left(G_{1}, \ldots, G_{k}\right)$. If we know $V\left(R,\left(G_{1}, \ldots, G_{k}\right)\right.$, then

$$
T\left(\gamma_{L}(R)=V\left(R,\left(G_{1}, \ldots, G_{k}\right)\right)\right.
$$

Otherwise, we may estimate the number similarly to the case of duplicate elimination:

$$
T\left(\gamma_{L}(R)\right)=\Pi_{i=1} k V\left(R, G_{i}\right)
$$

i.e., the number of theoretically possible distinct tuples.

We can also use the rule

$$
T\left(\gamma_{L}(R)\right)=\min \left(0.5 \cdot T(R), \Pi_{i=1} k V\left(R, G_{i}\right)\right)
$$

[^0]: ${ }^{1}$ A more general version of projection operation also may allow for increase in size of the tuple, but such increases can also be predicted fairly well.

