
. .
CSC 468 DBMS Implementation Alexander Dekhtyar
. .

Concurrency Control
Serializable Schedules and Locking Protocols

Serializability Revisited

Goals of DBMS:

1. Ensure consistency of database states.

2. Process transactions efficiently.

Serial schedules ensure database consistency, but serial execution of transactions is inefficient.

Serializable schedules are defined in order to bridge the gap between consistency and efficiency.

• As their outcome must be equivalent to the result of some serial schedule, serializable schedules
are guaranteed to preserve consistency of the database

• As they are not required to be serial, serializable schedules allow for interleaving of actions
from different transactions.

Question 1: How much concurrency is allowed by serializable schedules?

Given transaction T , we denote as dom(T ) the set of all database objects that T acesses (both in
read and write modes).

Proposition 1 Let T1 and T2 be two transactions such that dom(T1) ∩ dom(T2) = ∅. Then

1. Both serial schedules T1;T2 and T2;T1 result in the same database state.

2. Any valid schdule over T1 and T2 is serializable.

Proof.(sketch)

1. To prove that both serial schedules result in the same database state, we examine the resulting
value of each database object in D = dom(T1)∪dom(T2). If A ∈ D, then by our assumption,
either A ∈ dom(T1) and A 6∈ dom(T2) or vice versa. Therefore, its value gets modified by
only one transaction, and does not change throughout the execution of the second transaction.

2. We notice that any schedule over the set {T1, T2} has no RW, WR oe WW conflicts.
Then the statement follows from the following, more general lemma.

Lemma 1 Let S be a schedule without conflicts over two committed transactions T1 and T2.
Then S is a serializable schedule.

1



Proof.(sketch) We need to show that the final state of the database after S is executed is equivalent
to the final state of the database after either T1;T2 or T2;T1.

We consider all objects in dom(T1) ∪ dom(T2). Two possibilities arise:

1. dom(T1) ∩ dom(T2) 6= ∅. In this case, one or more objects T1 and T2 access are the same.
Given an object A ∈ dom(T1)∩ dom(T2), there are only two possibilities: (i) either both T1
and T2 have read-only access to A or (ii) one of the transactions accesses A after the other
transaction has committed.

If there is at least one object A ∈ dom(T1) ∩ dom(T2) for which (ii) holds, then we claim
that this object uniquely defines the serial schedule to which S is equivalent. Indeed, assume
that A is accessed first by T1 and then – by T2 after T1 commits.

We claim that S in this case is equivalent to T1;T2. Clearly, the value of A after S is
equivalent to the value of A after T1;T2. The values of all objects B ∈ dom(T1)∪dom(T2)−
dom(T1) ∩ dom(T2) after S will match those after T1;T2 (see Proposition 1.1).

Let A′ ∈ dom(T1) ∩ dom(T1). If both T1 and T2 only read A′ then its value after S will be
the same as its value after T1;T2. We need to show that it is impossible for transaction T2
to modify A′s value before T1. This is indeed so. We know that T1 accesses A′s value.

If T1 writes A′s value, T2 cannot access A′ until after T1 commits (as S is conflict-free),
therefore the final value of A′ will be the same as in the serial schedule T1;T2.

If T1 reads A′s value, T2 cannot write it until T1 commits (otherwise, a conflict would be
registered in S). This, however means that again, the final value of A′ is determined by T2,
and therefore is equal to that of T1;T2 serial schedule, which proves the first part of the
lemma.

2. dom(T1) ∩ dom(T2) = ∅. This is really Proposition 1.2. From Proposition 1.1 we know that
both T1;T2 and T2;T2 yield the same database state. Simple analysis of the values of each
object in dom(T1) ∪ dom(T2) after S ends shows that these values will be the same as those
in any serial schedule.

From the two result above, we notice that

• Serializable schedules allow for arbitrary interleaving of the transactions that access com-
pletely different sets of database objects.

• Serializable schedules do allow certain degree of interleaving when transactions access the same
object.

• All conflict-free schedules are serializable.

One would want to know if the revese of the latter is true:

Question 2: Are all serializable schedules conflict-free?

The answer to this question is NO.

Below is an example of a serializable schedule that is not conflict-free (contains an unrepeatable
read).

2



T1 T2

R(A)
W(A)

commit
commit

The schedule above is equivalent to serial schedule T1;T2. There is an RW conflict in the
schedule, but it never “materializes” to affect the outcome.

Locking

Goal of DBMS (revised):

Ensure serializability of all schedules.

To achieve this goal, DBMS may want to ensure the following properties of its schedules:

• If some transaction T has read some object A, no transaction T ′ can write A until T commits
or aborts.

• If some transaction T has written some object A, no transaction T ′ can access A until T

aborts or commits.

Object Locking has been proposed as the way to assure these properties of the schedules.

Lock: permission by a DBMS to a transaction to access the content of a particular database object.

Shared Lock: permission to read the value of the object. More than one transaction can hold a
shared lock on the same object at the same time.

Exclusive Lock: permission to write the value of the object. At most one transaction can hold an
exclusive lock on an object at a time, and no shared locks are allowed by other transactions
on an object for which an exclusive lock exists.

New Rules For Transaction Processing

• Before accessing a database object, any transaction must request an appropriate lock
on it.

• If the lock is granted by the DBMS, the transaction may proceed.

• If the lock cannot be granted immediately, the lock request is queued and the transaction
is suspended until the lock can be granted.

• Transaction must release all the locks it holds before it terminates (commits or aborts).

3



Notation: S(A) – request for a shared lock on object A. X(A) – request for an exclusive lock
on object A. U(A) – request to release current lock on the object A.

Note: We assume that abort and commit commands result in automatic release of all locks held
by a transaction at that time, therefore, we do not specify all unlock requests explicietely, unless
necessary.

Scheduling with locking is illustrated in the following example:

T1 T2 T3

S(A)
X(A)

R(A)
X(B)
S(A)
R(A)
U(A)
W(B)

commit
R(A)

commit
W(A)
commit

4



T1 T2

X(A)
X(B)

W (A)
W (B)
U(B)
X(A)

U(A)
W (A)

X(B)
W (B)
commit

commit

Figure 1: Non-serializable schedule with locking.

• Locking by itself does not guarantee serializability of schedules.

This is illustrated by the schedule in Figure 1

In this schedule, the value of object A in the final state is written by T2 and the value of object B

– by T1, therefore it is not a serializable schedule.

Locking Mechanisms: 2-Phase Locking

Locking Mechanism: set of rules for locking and unlocking objects.

We want the locking mechanism to produce only serializable schedules.

2-Phase Locking (2PL)

2-Phase Locking (2PL) works according to the following two rules:

1. If a transaction T wants to read/write an object A, it must first request a shared/exclusive
lock on A.

2. Once a transaction released one lock it cannot request any additional locks.

Informally, with 2-Phase Locking, the life of any transaction consists of two periods (phases):
(i) the period during which the transaction acquires new locks (growing) and (ii) the period during
which the transaction releases its locks (shrinking).

It is easy to see that schedule from Figure 1 does not satisfy the conditions of 2PL as transaction
T1 acquires a lock on B after it has released its lock on A.

5



T1 T2

X(A)
X(B)

X(A)
W (A)
U(A)

W (A)
X(B)

W (B)
commit

W (B)
commit

T1 T2

X(A)
X(B)

X(A)
W (A)
W (B)
commit

W (A)
X(B)
W (B)
commit

Figure 2: Schedules that follow 2PL (left) and Strict 2PL(right) locking mechanisms.

Strict 2-Phase Locking (Strict 2PL)

Strict 2-Phase Locking is a modification of 2-Phase Locking which disallows nontrivial shrink-
ing phase in any transaction. It can be described as follows:

1. If a transaction T wants to read/write an object A, it must first request a shared/exclusive
lock on A.

2. Once a transaction have acquired a lock it cannot release it until it commits or aborts.

Figure 2 contains the examples that illustrate 2PL and Strict 2PL locking mechanisms. The
schedule on the left satisfies 2-Phase Locking requirements, but will not be accepted accord-
ing to Strict 2-Phase Locking. The schedule on the left satisfies both 2PL and Strict 2PL
mechanisms.

Properties of 2 Phase and Strict 2 Phase Locking

Questions

• Want mechanisms for producing serializable schedules.

• Locking and locking mechanisms required.

• 2 Phase Locking and Strict 2 Phase Locking.

Question 1 Are the schedules produced by 2PL/ Strict 2PL serializable ?

Question 2 Are all serializable schedules produced by 2PL (Strict 2PL)?

Question 3 What is the difference between 2PL and Strict 2PL ?

Question 4 How do we characterize the schedules produced by 2PL / Strict 2PL ?

6



S1:
T1 T2

X(A)
S(C)
R(C)
X(B)

W (A)
W (B)
U(B)
X(A)

U(A)
W (A)

X(B)
W (B)
commit

commit

S2:
T1 T2

X(A)
X(B)

S(C)
R(C)
X(A)

W (A)
U(A)

X(B)
W (B)
commit

W (B)
W (A)
commit

S3:
T1 T2

X(A)
X(B)
W (A)
W (B)
commit

S(C)
R(C)
X(A)
X(B)
W (B)
W (A)
commit

Figure 3: Non-serializable, conflict-serializable and serial schedules.

Conflict Serializability

Let us consider for now only schedules consisting of committed transactions.

Dependency (Serializability) Graph.

Let S be a schedule over the set of transactions T = {T1, . . . , TN}. A dependency graph of S,
denoted GS , is defined as follows:

• The set of nodes of GS is T .

• GS has an edge from T i to Tj labeled with a database object A if

1. both T i and Tj access some object A;

2. at least one of these accesses is a write;

3. no other transaction accesses A between T i’s and Tj’s accesses.

Conflict Equivalence.

Two schedules S1 and S2 over the set of transactions T are conflict-equivalent iff GS1 = GS2.

Conflict Serializability.

A schedule S is conflict-serializable iff it is conflict-equivalent to some serial schedule.

Figure 3 shows three different schedules for the same set of transactions T = {T1, T2}. Schedule
S1 is not serializable as at the end A will have value set by T2 and B will have value set by T1.
Schedule S3 is serial. To see that schedule S2 is conflict-serializable, we construct the dependency
graphs GS1, GS2 and GS3 (see Figure 4).

7



Figure 4: Dependency Graphs for schedules S1, S2 and S3.

T1 T2 T3

X(A)
R(A)

X(A)
U(A)

W (A)
commit

X(A)
X(A)

W (A)
commit

W (A)
commit

Figure 5: A serializable schedule that is not conflict-serializable.

Relationships Between Schedule Types

Theorem 1 A conflict serializable schedule over a static database is serializable.

The requirement that the database is static, i.e., no new objects created and no existing objects
deleted while the schedule is executed is important. We will discuss this requirement and predicate
locks later in the course.

The inverse of Theorem 1 is not true as manifested in the counterexample on Figure 5. Here, the
schedule depicted is equivalent to the serial schedule T1;T2;T3 (because T3 blindly overwrites
the actions of T1 and T2) but it is not conflict-equivalent to any serial schedule (as can be verified
by building appropriate graphs).

Note: Conflict-serializability is a syntactic property of a schedule while serializability is a semantic
property. Conflict-serializability is a stronger property.

Lemma 2 1. The dependency graph for a serial schedule is acyclic.

2. A schedule is conflict-serializable iff its dependency graph is acyclic.

Theorem 2 Let S be a schedule generated according to a 2 Phase Locking Mechanism over a set of
transactions T = {T1, . . . , TN}. Then GS is acyclic.

From Lemma 2 and Theorem 2 we infer

8



T1 T2

X(A)
X(A)

R(A)
W (A)
X(B)
U(A)

R(A)
W (A)
X(C)

R(B)
W (C)
commit

abort

Figure 6: 2 Phase Locking in insufficient to ensure strictness of the schedules.

Theorem 3 Any schedule produced by 2 Phase Locking mechanism is conflict-serializable (and hence,
serializable).

2 Phase Locking vs. Strict 2 Phase Locking

Theorem 4 Every schedule conforming to Strict 2 Phase Locking also conforms to 2 Phase Locking.

Question 5: What schedules are excluded by Strict 2PL ?

Strict Schedules.

A schedule S over the set of transactions T = T1, . . . TN is called strict iff any value written by
any transaction T i to any database object A does not get accessed by other transactions until T i

terminates (commits or aborts).

Theorem 5 Any schedule produced by Strict 2 Phase Locking Mechanism is strict.

Question 6: Why is strictness of schedules improtant.

In a non-strict schedule, if a transaction aborts, it may cause other transactions to abort.

Figure 6 illustrates (i) the problems with non-strict schedules in the presence of aborted trans-
actions and (ii) that 2 Phase Locking may produce non-strict schedules.

When transaction T2 commits, the changes it makes to data become permanent. However, when
T1 aborts, the changes it made to object A should be rolled back. However, the changes made by
T2 to A and (possibly) C depend on the value of A as written by T1. Therefore, after T1 aborts,
the results of T2 become stale and have to be undone.

Bottomline: Strict 2 Phase Locking ensures that no transaction has access to data that may become
stale, by enforcing strictness of the schedules generated by it. Because of this, desptite the extra
limitations Strict 2PL puts on interleaving of transactions, it is preferable to simple 2 Phase Locking.

9


