Fall 2013 CSC 468: DBMS Implementation Alexander Dekhtyar

Project Stage 1.0: Paginated Data Access

Due date: Wednesady, May 11, 11:59pm.

Overview

Stage 1 of the project incorporates the work you have done during Lab 2 and extends it to build:

e Complete buffer manager layer.

e Functionality for paginated disk access for heap, sequential and hashed DB files.

FLOPPY: Stage 1.0
This document describes the lower tiers of FLOPPY architecture:

e Buffer Manager

e Page Read/Write layer

Buffer Management

FLOPPY’s buffer manager largely follows the design you have built in your lab assignments. The
buffer consists of two spaces with M slots allocated for the buffer proper - connected to the persistent
storage, and NN slots allocated for the volatile cache. Each slot, either in the persistent part or the
volatile part of the buffer has the size of a single disk page. The supporting data structures for the
buffer have been described in Lab 2 and Lab 3. The full Buffer Manager API has been described in
Lab 3 and is repeated here for the sake of completeness.



function declaration

brief description

int commence(char * Database, Buffer * buf,
int nBufferBlocks, int nCacheBlocks);
int squash(Buffer * buf);
int readPage(Buffer * buf, DiskAddress diskPage);
int writePage(Buffer *buf, DiskAddress diskPage);
int flushPage(Buffer *buf, DiskAddress diskPage);
int pinPage(Buffer *buf, DiskAddress diskPage);
int unPinPage(Buffer *buf, DiskAddress diskPage);
int newPage(Buffer *buf, fileDescriptor FD,
DiskAddress * diskPage);
int allocateCachePage(Buffer *buf, DiskAddress diskPage);

int removeCachePage (Buffer *buf, DiskAddress diskPage);

initialize the buffer

graciously end the work of the buffer manager
read access to the disk page

write access to the disk page

flush the page from buffer to disk

pin the page

unpin the page

add a new disk page

allocate an empty slot in the cache to store
a page with diskPage virtual address
clear the volatile slot that contains a given page

Data Files

FLOPPY shall store information in the following types of files:

1. Fixed-record heap files. Heap files store data on first-come,

first-serve basis. Fixed-record heap

files store records of pre-set fixed witdth. While the structure of most data tables used by the
Peer-to-Peer system which FLOPPY will support is fixed, you shall implement fixed record
heap file storage for database tables with arbitrary record structures. We discuss record
structure descriptors below.

. Fixed-record sequential files. You will use sequential files primarily to develop secondary index
structures for faster access to the data. Most of the FLOPPY queries will result in retrieval
of objects from tables by their unique id or other easily indexable property. The primary
index structure you will be maintaining on top of fixed-record sequential files is the B-+trees,
although for some indexing you may get away with a simple index structure. (From the
point of view of software development, it might be cheaper to represent all index stuctures as
B+trees though).

. Fixed-record hashed sequential files. These may be needed for storing some volatile storage
data.

The structure of the index files is fixed, but the data files representing the data tables must
store different types of records. We discuss what you will support below.

FLOPPY Data Types

FLOPPY shall support the data of the following types:

1. INTEGER or INT type. An INT value is 4 bytes long.



2. FLOAT type. A floating point value is 8 bytes long and is represented as a linux 32-bit floating
point number.

3. VARCHAR(n) type. A string value type represented as an array of n + 1 bytes. The length of
a VARCHAR value is the actual length of the string contained in it, which can be less than n.
You will use null termination for representing strings.

4. DATETIME type. A type for representing date/time values. In C, this is a time_t structure.
It is 8 bytes long. You need to be able to decode the data represented in a time_t value into
a standard Linux timestamp format (e.g., the result of running the Linux date command
that returns a DayOfWeek Month Day Hour Minute Second TimeZone Year format. You can
decide whether you want to store time_t values verbatim (convenient, compact, divisible by
8), or whether you want to convert them to string representations (human readable, verbose)
and store them that way. FKEither way, you must store the DATETIME values the same way
throughout.

5. BOOLEAN type. True or False. Can be stored in a single byte, or if you want to prevent padding
issues, use a four-byte representation, which essentially makes it a synonym for an INT.

CREATE TABLE Statements

FLOPPY shall support a simple standard SQL CREATE TABLE statement for creating relational
tables. The syntax of the CREATE TABLE statement is:

CREATE TABLE <Table> [VOLATILE] (
<Attribute> <Type>,

<Attribute> <Type>,
PRIMARY KEY (<Attribute>[,<Attribute>]*)
[, FOREIGN KEY (<Attribute> [,<Attribute>]*) REFERENCES <TableName>]

Here,
<Table> name of a relational table (a FLOPPY identifier)
<Attribute> name(s) of the table attributes (a FLOPPY identifier)
<Type> FLOPPY data type. One of INT, FLOAT,

VARCHAR (n), DATETIME , or BOOLEAN
<TableName> A name or another table (where the foreign key constraint is pointing)

Specifically, the CREATE TABLE statement names the table being created, lists its attributes,
identifies the primary key (this is mandatory), and specifies, as necessary, one or more foreign key
constraints.

For now, other constraints allowed in the SQL CREATE TABLE statements will not be required.



A CREATE TABLE statement that has an optional VOLATILE qualifier shall result in a creation of
a table that is stored in the volatile part of the buffer. If the VOLATILE qualifier is not included in
the statement, CREATE TABLE statement shall result in a data file representing the table created in
the persisten storage (tinyFS).

Processing CREATE TABLE Statements

A CREATE TABLE statement passed to FLOPPY shall be processed as follows

1. Parsing. The parser shall identify the statement as a CREATE TABLE statement, and shall
extract from it the following information:
e Table name
e Table storage presecription: volatile or persistent.
e List of attributes with their types
e Primary key
e Foreign keys, if any.

Note: All foreign keys must reference tables that already exist in the database, otherwise an
error must be returned.

2. Preparation. The next step is to create a representation of the database table records. Create
a struct tableDescription following the instructions below, and for each CREATE TABLE
statement generate an instance of such struct (in C++, feel free to create the appropriate
class). This instance shall be passed as a parameter to the actual table creation function.

3. Table Creation. There are two table creation functions that you will implement: createPersistentTable ()
and createVolatileTable(). Each function, given the description of the table stored ina
tableDescription instance, shall create the appropriate data file - either in persistent storage
or in volatile storage.

4. Index Creation. You must create the following secondary index structures for all persistent
tables:

(a) Index on primary key. This one must always be created.

(b) Index on each of the foreign keys.

The index creation step can be postponed until after the B+trees are implemented, but it
has to be implemented.

5. Maintenance. Finally, you shall update your internal data structures - the list of database
tables, etc., to reflect the new state of the database.



Parsing. Largely left to individual teams. You can postpone writing of the parser until later in
the class and concentrate on steps 2-5 of the process for now. However it might also make sense
to actually write the parser for the CREATE TABLE statement early to be able to debug your code
conveniently.

Preparation. The tableDescription struct can be envisioned roughly as follows:

typedef struct Attributes{

char * attName; /* attribute name */
int attType; /* attribute type. a better choice is to use enums */
Attribute * next; /* pointer to next attribute */

} Attribute;

\begin{verbatim}

typedef struct FK{
char * tableName; /* table the foreign key references */
Attribute * key; /* foreign key itself =/

foreignKeys * next; /* next foreign key on the list.
} foreignKeys;

typedef struct Tables {

char * tableName; /* name of the table */
Attribute * attributelist; /* list of attributes */
Attribute * pKey; /* primary key */
foreignKeys * fKeys; /* list of foreign keys */

} tableDescription;

createPersistentTable() . This function shall create a tinyFS file representing a described
table, and set up all the infrastructure in the buffer manager to support writes to and reads from
this data file. The function description is:

int createPersistentTable(Buffer buf, tableDescription table);

The first argument is the buffer the FLOPPY uses, and the second argument is the table de-
scription constructed prior to calling createPersistentTable () function.

This function shll behave as follows:

1. Check to see if a table with a given name already exists in the database (check the table list
stored in the Buffer object. If it does, exit with a Table Exists error code.



2. Determine the structure of the record for the new database file. Create a descriptor of this
structure.

3. Create a new tinyFS data file for storing the given table.
4. Read the file header page for the new file into the buffer.

5. Place all necessary information on the header page. This includes the descriptor of the record
structure that you have constructed on Step 2.

6. Force-write the header page to disk.
Index Creation. Will be discussed at later stages.

Completion. At a minimum, you shall maintain a list of database tables together with their
persistent properties: the name of the tinyFS file, their status (persistent, volatile), and so on. This
list of tables may later be used by other parts of your system to store some useful information
(access timestamps, locks, and so on), but for now, just treat is as a directory listing of all objects
created in the database. This will include the index structures you created for the new data file.

Good Luck!



