
. .
Spring 2009 CSC 468: DBMS Organization Alexander Dekhtyar
. .

Homework 1
Data Storage

Due: Wednsday, February 11, in-class

Submission. Please submit your solutions on February 11, in-class. I
encourage everyone to use text-processing software for the solutions and use
PowerPoint, xfig or other graphical tools to draw pictures/diagrams required
in this homework. (I will accept handwritten solutions, but I discourage
them. This policy is mainly to ensure expedient and error-free grading).

Problem 1

You will consider two different schemas for storage of data on disk. For each
schema, you have to provide descriptions of (a) the page header and (b)
records for each of the relational tables described below. You also have to
specify both the page header size and the size of the record, and determine
how many records can be stored on a single disk page.

In both problems, INT has size 4 and FLOAT has size 8 (bytes).

Storage Schema A.

The size of a disk page is 1Kb. You reserve 128 bytes for the constant-size
part of the page header. The file organization is heap. You store a bitmap
of available slots on the disk page in the header (this is the variable size
portion of the page header. The total size of the page header is the sum of
the sizes of both parts of the header). The organization of the constant-size
part of the header is left up to you, but you need to ensure that the header
contains all necessary information to successfully retrieve/maintain records.

All records are constructed by concatenating the field representations of
individual attributes. There are no record headers, and you resolve the
constraints on the starting positions of the fields by padding. Each record
must start at an offset divisible by 8, which entails that the size of the page
header must also be divisible by 8.

1

Deleted records are marked in the bitmap, and nowhere else. You can
assume that the relation schema is stored in the file header page, i.e., your
pages need not keep this information.

Storage Schema B.

The size of a disk page is 2Kb. You reserve 64 bytes for the page header.
The file organization is sequential. You use sliding to reclaim space during
deletions, which means that the free space on your pages can occur only at
the end of the block. Your header must contain all information necessary
for maintenance of data.

All records are constructed by concatenating the field representations of
individual attributes. In addition, an 8-byte header is attached to each
record. It includes two timestamp fields - one for the last read access and
one - for the last write access to the record. You resolve the constraints on
the starting positions of the fields by reordering the fields in the record, and
adding and additional padding, if needed to the end of the record, to ensure
that all records start with the offsets divisible by 8.

Relations

Below is a list of relations you have to use. Note, that these are standalone
relations, NOT a list of relations forming a coherent database.

1. Employee(Id INT, SSN INT, Name VARCHAR(40), Department INT,
Salary FLOAT, Bonus FLOAT, StartYear INT, Comment CHAR(80)).

2. Team(Id INT, Name CHAR(20), City CHAR(20), Owner INT, Division
CHAR(20), Year INT).

3. Survey(RespondentId INT, Sex CHAR(1), Income INT, Age INT, Race
INT, Q1 INT, Q2 INT, Q3 INT, Q4 INT, Q5 INT, Q6 INT).

4. Transcript((Id INT), FirstName CHAR(20), LastName CHAR(20), Col-
lege CHAR(5), Status CHAR(2), Course CHAR(7), Semester INT, Year
INT, Grade INT, CurrentGPA FLOAT).

5. Transaction(Id INT, DateTimePosted DATE, DateTimeOccurred DATE,
CardNo CHAR(16), Location INT, Vendor INT, Amount FLOAT, FeeRate
FLOAT, Fee FLOAT).

6. Goods(Id CHAR(15), Food CHAR(20), Flavor CHAR(20), Price FLOAT).

Questions

For each storage schema, and for each relation, do the following:

2

1. Describe the structure of the disk record storing a tuple from the
relation. Draw a diagram (see below). Determine the size of the
record.

2. Describe the structure of the page header (draw a diagram), determine
its size (if not constant).

3. Determine the number of records that can be stored on a single disk
page.

4b 20b 20b 4b 20b 4b

Id Name City Owner Division Year

72 bytes

1A

Name Pad
Department

4b 4b 41b 3b 4b 4b 8b 8b 4b 80b

PadSalary
Bonus

Comment
Starting Year

1B 8b 8b 8b 4b 4b 4b 4b 41b 80b 7b

168 bytes

160 bytes

Salary
Bonus

Id
SSN

Department
Starting YearName Comment Pad

2A

8b

Header

4b 20b 20b 4b 20b 4b

Id Name City Owner Division Year

80 bytes

2B

3

ResoondentId
Sex

Pad

Income
Age Race Q1 Q2 Q3 Q4 Q5 Q6

4b 1b 3b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b

Pad
48 bytes

3A

ResoondentId
Income

Age Race Q1 Q2 Q3 Q4 Q5 Q6Pad

Sex

8b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 1b 7b

Header
56 bytes

3B

4A
 4b 20b 20b 5b 2b 7b 2b 4b 4b 4b 8b

Id FirstName LastName

College
Status

Course
Pad

Semester
YearGrade

CurrentGPA

80 bytes

4B

Id FirstName LastName Header

SemesterCurrentGPA
Year

Grade
College

Status
Course

Pad

88 bytes

8b 8b 4b 4b 4b 4b 29b 29b 5b 2b 7b 2b

5A
4b 4b 4b 16b 4b 4b 4b 8b 8b 8b 8b 8b 8b 8b 4b 4b 4b 4b 4b 4b

Id

DateTimePosted
DateTimeOccurred

CardMp

Location
Vendor

PadAmount
FeeRate

Fee Header Amount
FeeRate Fee Id

DateTimeOccurred
DateTimePosted

LocationVendor
Pad

72 bytes64 bytes

5B

6A

6B

15b 1b 20b 20b 8B

Id Pad Food Flavor Price

Header Price Id Food Flavor Pad

64 bytes

72 bytes

Arithmetics

(1A) Record size = 160 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding) = 136 bytes. Available to store records: 1024 - 136
= 888 bytes. Number of records per page: 888 div 160 = 5. Size of
bitmap: 1 byte.

(1B) Record size = 168 bytes. Page header: 64 bytes. Available for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 168 =

4

11.

(2A) Record size = 72 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding). = 136 bytes. Available to store records: 1024 -
136 = 888 bytes. Number of records per page: 888 div 72 = 12. Size
of bitmap: 2 bytes.

(2B) Record size = 80 bytes. Page header: 64 bytes. Avaliable for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 80 =
24.

(3A) Record size = 48 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding) = 136 bytes. Available to store records: 1024 - 136
= 888 bytes. Number of records per page: 888 div 48 = 18. Size of
bitmap: 3 bytes.

(3B) Record size = 56 bytes. Page header: 64 bytes. Available for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 56 =
35.

(4A) Record size = 80 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding) = 136 bytes. Available to store records: 1024 - 136
= 888 bytes. Number of records per page: 888 div 80 = 11. Size of
bitmap: 2 bytes.

(4B) Record size = 88 bytes. Page header: 64 bytes. Available for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 88 =
22.

(5A) Record size = 64 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding). = 136 bytes. Available to store records: 1024 -
136 = 888 bytes. Number of records per page: 888 div 64 = 13. Size
of bitmap: 2 bytes.

(5B) Record size = 72 bytes. Page header: 64 bytes. Avaliable for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 72 =
27..

(6A) Record size = 64 bytes. Page header: 128 bytes (persistent) + 8 bytes
(bitmap+padding). = 136 bytes. Available to store records: 1024 -
136 = 888 bytes. Number of records per page: 888 div 64 = 13. Size
of bitmap: 2 bytes.

(6B) Record size = 72 bytes. Page header: 64 bytes. Avaliable for records:
2048 - 64 = 1984 bytes. Number of records per page: 1984 div 72 =
27..

Page Headers

(A) The page header should contain:

5

Field size Comment

PageId 4 bytes (INT) Id of the page
PtrNext 4 bytes pointer to next page in the heap
PtrPrev 4 bytes pointer to previous page in the heap
PtrNextFree 4 bytes pointer to next page in FreeSpace list
PtrPrevFree 4 bytes pointer to previous page in FreeSpace list
RecordSize 4 bytes size of records on the page
MaxRecords 4 bytes total number of records that can be stored
CurrentRecords 4 bytes number of records currently on the page

Total size: 32 bytes. (Additionally, a few timestamps can be added).

(B) The page header should contain:

Field size Comment

PageId 4 bytes (INT) Id of the page
PtrNext 4 bytes pointer to next page in the heap
PtrPrev 4 bytes pointer to previous page in the heap
RecordSize 4 bytes size of records on the page
MaxRecords 4 bytes total number of records that can be stored
CurrentRecords 4 bytes number of records currently on the page

Total size: 24 bytes. Additioanlly, a few timestamps can be added.

Problem 2

Consider a database consisting of three data files, P, T and R. Each file
consists of a number of disk pages (blocks). We refer to block number i from
file F as Fi, e.g., P1 is the first page of file P, T20 is the 20th page of file T
and so on.

The DBMS controlling the database is equipped with a buffer manager
B. The size of the buffer space is 4 disk blocks.

Consider the following possibilities for B.

B1 : LRU (Least Recently Used) buffer manager. This manager uses the
least recently used page and flushes it to disk, when a new page needs
to be brought from disk.

B2 : FIFO (First In, First Out) buffer manager. This manager flushes
the oldest page in the buffer.

B3 : Simple Clock buffer manager. This buffer manager uses the simple
clock algorithm (starting with buffer 1 of the buffer space) to determine
the next buffer to be flushed.

The query execution layer of the DBMS uses four operations to control
data access:

• Read(PageId): results in the page with the given PageId being trans-
fered to the buffer. No action if the page is already in the buffer.

6

• Write(PageId): results in the page with the given PageId being marked
as ready for transfer back to disk. If the page is NOT in the buffer,
it is transferred back to the buffer, using the buffer manager’s man-
agement strategy, and is marked ready afterwards.

• Pin(PageId): given page is pinned in the buffer. If the page to be
pinned is NOT in the buffer, Read(PageId) command is executed first.

• Unpin(PageId): given page is unpinned in the buffer.

All buffer managers first look find empty slots in the buffer. If no empty
slots are available, they look to flush back to disk any pages marked as
ready by the Write() command. If no such pages found, the respective buffer
management strategy is engaged. Filling an empty slot or flushing a ready

page does not affect the position of the pointer in the clock algorithms.

For each of the following two sequences of commands and each of the
buffer management strategies outlined above, show the state of the buffer
after each 8 operations. (marked as “checkpoint” in the sequence). For
each of the four buffers in the buffer space, show the id of the page stored
in it, and whether the ready and/or pin flags have been set. For the clock-
based buffer managers show current counter values, and the position of the
clock “hand”. For LRU and FIFO managers, show the timestamps (use the
position in the sequence below as the timestamp).

In all cases assume you start with empty buffer space. For prioritized
clock buffer manager, assume that all pages from T and P are added with
counter values set to 1, while pages from R are added with counter values
set to 2.

Sequence 1

Read(T1);

Read(R1);

Read(P2);

Pin(P2);

Read(P3);

Read(T2);

Read(T1);

Read(R4);

Checkpoint;

Write(R4);

Unpin(P2);

Write(P2);

Read(T3);

Pin(T3);

Write(R3);

Read(R1);

Read(R5);

Checkpoint;

7

Unpin(T3);

Write(T3);

Write(T1);

Read(T2);

Write(P2);

Pin(T1);

Read(R6);

Read(R7);

Checkpoint;

Sequence 2

Read(P1);

Read(R1);

Read(T2);

Read(R3);

Read(R4);

Read(P2);

Read(T1);

Read(P1);

Checkpoint;

Read(R3);

Pin(P1);

Pin(R4);

Read(R5);

Read(T1);

Read(T2);

Write(T2);

Read(T4);

Checkpoint;

Read(R1);

Unpin(P1);

Read(R2);

Read(R3);

Unpin(P4);

Read(T3);

Read(P1);

Read(T2);

Checkpoint;

8

LRU

Sequence 1 Checkpoint 1:

1 2 3 4

T2 T1 P2 R4

PINNED

Checkpoint 2: (Read(T3) replaces page in buffer 3. Could also replace
page in buffer 4)

1 2 3 4

R5 T1 T3 R1

PINNED

Checkpoint 3:

1 2 3 4

R6 T2 T1 R7

PINNED

Sequence 2 Checkpoint 1:

1 2 3 4

R4 P2 T1 P1

PINNED

Checkpoint 2:

1 2 3 4

T1 R4 T4 P1

PINNED PINNED

Checkpoint 3: Unpin(P4) has no effect on the state of the buffer.

1 2 3 4

T2 R4 P1 T3

PINNED

FIFO

I believe I actually managed to set up both sequences in a way that makes
LRU and FIFO buffer managers behave in the same way. (if your results
differ, email me).

Clock Buffer

I used ClockBuffer program (now available on the course web page) to run
the assignment. The output is below.

Sequence 1

------------- CHECKPOINT ----------------

9

PageId Counter Pin Ready

Slot 1: T2 0 NOT PINNED NOT READY

Slot 2: R4 2 NOT PINNED NOT READY

Slot 3: P2 1 PINNED NOT READY

--->Slot 4: T1 1 NOT PINNED NOT READY

------------- CHECKPOINT ----------------

PageId Counter Pin Ready

Slot 1: R5 2 NOT PINNED NOT READY

Slot 2: T3 1 PINNED NOT READY

--->Slot 3: R1 2 NOT PINNED NOT READY

Slot 4: T1 0 NOT PINNED NOT READY

------------- CHECKPOINT ----------------

PageId Counter Pin Ready

--->Slot 1: R5 0 NOT PINNED NOT READY

Slot 2: R6 2 NOT PINNED NOT READY

Slot 3: R7 2 NOT PINNED NOT READY

Slot 4: T1 1 PINNED NOT READY

Sequence 2

------------- CHECKPOINT ----------------

PageId Counter Pin Ready

--->Slot 1: R4 1 NOT PINNED NOT READY

Slot 2: T1 1 NOT PINNED NOT READY

Slot 3: P2 0 NOT PINNED NOT READY

Slot 4: P1 1 NOT PINNED NOT READY

------------- CHECKPOINT ----------------

PageId Counter Pin Ready

Slot 1: R4 0 PINNED NOT READY

Slot 2: T4 1 NOT PINNED NOT READY

--->Slot 3: T1 1 NOT PINNED NOT READY

Slot 4: P1 0 PINNED NOT READY

------------- CHECKPOINT ----------------

PageId Counter Pin Ready

Slot 1: R4 0 PINNED NOT READY

--->Slot 2: P1 1 NOT PINNED NOT READY

10

Slot 3: T3 0 NOT PINNED NOT READY

Slot 4: T2 1 NOT PINNED NOT READY

11

