
. .
Cal Poly CSC 468: DBMS Implementation Alexander Dekhtyar
. .

Storing Relational Data on Disk

Disk Blocks

Recall:

• disk access operations are more expensive than data processing in main
memory;

• an individualRead or Write command issued to a disk controller can re-
trieve information stored in a number of consecutivedisk sectors.

To ensure that data stored in databases is retrieved efficiently, DBMS choose the
following data storage approach:

• A block or disk pageof a specific size is selected. The size of a block cannot
be too large — this may lead to wasted space, but should not be too small —
this will increase the number of disk access operations.

• Each relational table, and all supplemental index structures are stored
as collections of blocks/pages on disk.

Standard block sizes are 2, 4, 8, 16Kb. Larger blocks are usedless often.

Storing Relational Data in Disk blocks.

Note, the the solution proposed below is by far, not the only possible. There may
be a lot of different ways to store relational data on disk, e.g., grouping attributes
together, usingonly index structures, storing data from different tables in thesame
file, etc... As we discuss the traditional storage techniques, it will become apparent
why they are used and are considered efficient.

1



Header Data Data

Data

Data Data

Data Data

An overview of a Relational Table File structure

Figure 1: Database files on disk.

Each relational table is stored on disk as a single file, broken into a sequence
of disk pages. Individual blocks may be located in differentplaces on disk (dif-
ferent surfaces, tracks, cylinders, etc. . . ), but all content within a single page is a
consequtive seqence of bytes.

A disk block is typically equal to one or moresectorsof the disk. Note that
sectoris a term that describes physical properties of the disk, while blockandpage
describe logical constructs.

A typical relational table file consists of

1. Header page, the first page of the file.

2. Data pages, all remaining pages in the file.

Occasionally, depending on the types of data stored in the relational table, other
types of disk pages may be present in the file as well. The structure of a relational
table file is shown on Figure 1.

Header page

A header page is the first page/block of any database file. This page does not
contain any relational data from the database. Rather it contains useful information
about the file itself, as well as meta-information about the relational table.

The following information can be stored on the header page:

• Format identification information (something that tells DBMS, “I am your
file”);

• Relational table schema information;

• Record structure information: sometimes record structureon disk is different
than the logical structure of the table.

2



����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

Header

Record1
Record2
Record3
Record4

RecordN
Unused

...

Figure 2: Data Page/Block structure in a nutshell

• Record size;

• Starting points/pointers for various linked lists within the table file:

– Full ordered list of blocks;

– List of blocks with open space;

• Indexing information fornon-heapdatabase files (we will look at how records
are organized in the file below);

• Various timestamps.

• etc. . .

Generally speaking, the size of the block is typically more then enough to accom-
modate any information DBMS designer finds useful to store inheader pages.

Data page

Figure 2 shows the structure of a data block. It consists of

1. Block header, a sequence of bytes (typically at the beginning of the page)that
stores information about the current state of the disk page and any linked list
pointers for the entire file.

2. Data records: the main portion of the disk page is broken intorecords, se-
quences of bytes storing data from a single row or the relational table.

3. unused space: any leftover space that cannot be used to store a full record.

3



Storing Data in Disk Records

Eachrecord stores information about a single tuple. It is broken into parts repre-
senting values of each individual attribute of the tuple. Inaddition, records may
contain some extra information.

Representing Attributes

Attribute Type Storage Requirements

INTEGER 2 or 4 bytes
FLOAT 4 or 8 bytes
CHAR(n) array ofn bytes; unused bytes marked with⊥ (“pad”) character
VARCHAR(n) Length+content: array ofn + 1 bytes; first byte holds # bytes in string,

remaining bytes hold string content;
Null-terminated string: array ofn + 1 bytes, filled with string characters,
terminated bynull character

BIT(n) array of(ndiv8) + 1 bytes
Enumerated types Map values to integers, store asINTEGER value
DATE, TIME Converted intoINTEGER

Grouping Attributes in Records

Most DBMS use records offixed size. Here we will concentrate on such records.
Other applications, e.g., Information Retrieval, requirerecords of varying size.
These will be discussed separately later.

Building Fixed-size Records

First approach to building a record is toconcatenate the represenations of the tu-
ple’s attributes (a.k.a., fields) together. However, in doing so, the following rules
must be observed:

• INTEGERvalues (for 4-byte integers) must start at positions divisible by 4.

• FLOAT values (for 8-byte floating point numbers) must start at positions
divisible by 8.

• Sometimes, the rule is that all other fields must start at positions divisible by
4.

If there are fields of sizes not divisible by 4, or if concatenation leads to INTE-
GERs and FLOATs starting at wrong positions, the following can be done to rectify
the situation:

• Padding: empty, unused bytes are added between the fields to ensure that
the next field starts at the right position/offset.

• Field reodering: the record is built by fist putting all FLOAT values, then
all INTEGER values, then all other values. Because this structure may differ

4



from the order of attributes specified byCREATE TABLE statement, the
new order of attributes needs to be recorded somewhere (e.g., in the header
page of the file).

Record Headers

In addition, records can containheaders. The choice of whether to include a record
header, and what information to put in it is up to the DBMS designer. Record
headers for fixed-size records can contian the following information:

• Record schema/pointer to the place in the file where record schema is stored
(may also be contained in the block header).

• Length of the record.

• Timestamps for record modification/access

• Record state (active/deleted), a.k.a, “tombstone”.

Block Headers

Block Headers typically store information about the current state of the block,
and the block’s “position” in the overall file. The information stored in the header
is determined by the DBMS designer. Typically, it may include the following:

• Block ID;

• Links to other blocks in the file:

– next/previous block in the block order in the file;

– next/previous block that has space avaialble for new records;

– next/previous block in an special indexing order;

• Information about the relation, relational schema/pointer to the schema.

• General information about records in the block: record size, total number of
slots, number of used records, etc...

• Information about availble record space on the block:

– Number of available slots/records;

– Record availability bitmap;

• Timestamps.

5


