
. .
Cal Poly CSC 468: DBMS Implementation Alexander Dekhtyar
. .

Transaction Management

Motivation

• Database Management System Front End:

1. (i) Accept query from user

2. (ii) Process query

3. (iii) Output result

Step (ii) - core of DBMS.

• Query Processing:

High Level Low Level

Query Evaluation Data storage
Use of index structures Index organization
Query rewrite rules File system organization
Query evaluation plans Transaction Management

Cost models

Transaction (externally) Execution of any user program by a DBMS.

Transaction (internally) A series of reads and writes.

• Read database access (see Fig. 1)

– Data is stored in records on pages on physical storage devices
(e.g., hard disks).

– Pages are retrieved from physical storage and loaded into main
memory buffer.

– Records are retrieved from pages in main memory buffer and
passed to the transaction program where they are stored as vari-
ables.

1

Physical Storage
(disk)

Main memoryf
buffer

Transaction Program
variable

Figure 1: Data Flow in a Database Management System.

• Write database access (see Fig. 1)

– Data stored in the variables of the transaction program is written
into a page in main memory buffer

– Pages of main memory buffer are written to physical storage.

ACID Transactions

• Transaction Managers of DBMS operate in the following frame-
work:

– multi-user environment;

– transaction requests come from many users;

– transaction history is known;

– future transactions cannot be predicted;

• Transaction Managers must

– Ensure integrity and consistency of the data;

– Be able to process multiple transactions concurrently;

– Recover from system crashes (recovery manager);

ACID properties of Transactions:

(A)tomicitiy Transaction manager executes either all actions of the trans-
action or none. Incomplete transactions should not result in prema-
nent changed in the database.

(C)onsistency Each transaction run by itself must preserve the consis-
tency of the database.

(I)solation Each transaction should be protected from effects of other
transactions being executed alongside.

(D)urability Once the user informed about successful completion of a
transaction, its effects must become permanent in the database and
should be able to survive system crashes.

2

Schedules

Transaction A sequence of actions.

Action: One of the following:

Read: R(A): Read content of database object A into transaction
program memory

Write: W(A): Write new content into database object A

Commit: Successful temnination of transaction

Abort: Unsuccessful termination of transaction

• DBMS usually has to manage a set of transactions (set of sequences
of actions).

Schedule: A list of actions from a set of transactions T which preserves
the order of actions for each transaction T ∈ T .

• in other words: topologically sorted list of actions from actions(T).

Complete schedule: Schedule that contains either commit or abort for all
transactions T ∈ T .

• Two transactions are interleaved in a (complete) schedule S if the
actions of one of them appear after the second one starts but before it
commits or aborts.

Serial schedule: A complete schedule without interleaving transactions.

Why Serial Schedules are Bad ?

Example 1 Consider the following two transactions on the University of
Kentucky accouting database:

1. T1: Compute 7.65% of every employee’s monthly salary.

2. T2: Find Alex Dekhtyar’s monthly contribution to the retirement fund.

T1 needs to access all 20-40 thousands of records in the salary relation.
T2 needs to access one record from the retirement relation.

In a serial schedule where T1 is issued first and T2 is issued seconds later,
no action from T2 will be executed until T1 is committed (or aborted). This
may take a very long time.

Serializability

• Consistent database state

– defined by database manager/designer

– integrity constraints

– key/participation constraints

3

• Transactions must preserve database consistency

– If a transaction started in a consistent state, it must end its exe-
cution in one.

• Note: serial schedules result in consistent database states.

• Serializable schedule over a set of committed transactions - a sched-
ule whose effect on any database in a consistent state is guaranteed to
be identical to some serial schedule.

– Note: Different serial schedules of the same set of transactions
may result in different final states of the database.

– Equivalence to any serial schedule is sufficient for serializabil-
ity!!!

• Serializable schedule over a set of transactions T - a schedule whose
effect on any database in a consistent state is guaranteed to be equiva-
lent to any serial schedule of the set of all committed transactions from
T .

– Idea: Influence of aborted transactions should not be felt.

Conflicts

Non-serial schedules may be subject to the following three types of conflicts
(problems leading to non-serializability):

1. Write-Read (WR): Reading uncommitted data

2. Read-Write (RW): Unrepeatable read

3. Write-Write (WW): Writing uncommitted data

Write-Read (WR) Conflict

Description: WR conflict occurs when one transaction changes a particu-
lar database object, then another transaction reads it after which the
first transaction aborts.

Example: Consider the following schedule of actions for transactions T1
and T2:

T1:W(A); T2:R(A);T2:W(B); T1:Abort; T2:Commit.

T1 assigns new value(s) to object A but later aborts, causing the
change to be undone. However, in the meantime, T2 reads the value(s)
of object A as assigned by T1 and continues execution writing the
value(s) of object B, which quite possibly can depend on the value(s)
obtained from A.

4

Read-Write (RW) Conflict

Description: RW conflict occurs when one transaction changes reads value(s)
from a particular database object, this object is then overwritten by
second transaction, after which first transaction re-reads the value of
the object.

Example: Consider the following schedule of actions for transactions T1
and T2:

T1:R(A); T2:W(A);T1:R(A);T1:W(B) T1:Commit; T2:Commit.

In a serial schedule first and second read of A by T1 yield the same
result. In the schedule above, the results of these two reads are dif-
ferent (assuming T2 changed A), therefore, the rest of the transaction
T1 is possibly affected.

Write-Write (WW) Conflict

Description: WW conflict is similar occurs when writes interleaved from
different transactions result in an inconsistent state of the database.

Example: Consider the following schedule of actions for transactions T1
and T2:

T1:W(A); T2:W(B);T1:W(B);T2:W(A) T1:Commit; T2:Commit.

Each transaction by itself results in a consistent database state. How-
ever, in the schedule above the result stored in A comes from transac-
tion T2 and the result stored in B comes from transaction T1. These
two values may be inconsistent.

5

