
. .
Cal Poly CSC 468: DBMS Implementation Alexander Dekhtyar
. .

Crash Recovery:ARIES
Data Structures

The Log

In order to insure recoverability of operations, DBMS maintains the log. It
contains records necessary for successful recovery.

Log Records:

1. Update

2. Undo (Compensation Log Record)

3. Commit

4. Abort

5. End

6. begin checkpoint

7. end checkpoint

Structure of Log Records

commit, abort, end: (LSN, prevLSN, TransID, type)

update: (LSN, prevLSN,TransID, type, pageID, length, offset, before, after)

undo: ((LSN, prevLSN,TransID, type, pageID, length, offset, restored, nextUn-
doLSN) (CLR - Compensation Log Record)

begin checkpoint, end checkpoint: See below

Log Attributes

LSN: Log Sequence Number, unique id for each log record.

TransID: Id of the transaction which caused the record to be added to the log.

prevLSN: LSN of the previous log record for the same transaction

1



type: Type of the record. Possible values are update, undo, commit, abort, end,
begin checkpoint, end checkpoint.

PageID: Pointer to the page affected by the update (or undo).

length: Number of bytes to be written to the page by an update/undo opera-
tion.

offset: Position on the page where the value needs to be written to.

before: Value prior to the update.

after: Value after the update.

restored: Value, restored by the undo operation.

nextUndoLSN: In a CLR, the pointer to the next record for current transaction
which is to be undone.

More Data Structures

Transaction Table (T-Tab): Contains the list of all currently active trans-
actions. Contains many attributes. For recovery, the following attributes
for each transaction record are interesting:

TransID: Transaction ID

lastLSN: Pointer to the last record in the Log for the transaction.

Dirty Page Table (DPT): Contains the list of dirty buffer pages. Attributes:

PageID: ID of the buffer page

recLSN LSN of the first record in the log that made the page dirty.

Note: A buffer page is called dirty if it contains updates that had not yet been
flushed to stable storage.

LOG

LSN transID prevLSN type pageID length offset before after/restored undoNextLSN

10 T1 NULL update P1 1 500 200 100
20 T2 NULL update P2 2 134 3100 4000
30 T1 10 update P1 1 501 100 200
40 T3 NULL update P3 3 101 abc dog

50 T2 20 commit
60 T1 30 update P3 1 201 a z

70 T3 40 update P3 3 121 pqr red

80 T3 70 abort
90 T2 50 end
100 T3 80 undo P3 3 121 pqr 40

Transaction Table

transID status lastLSN

T1 active 60
T3 aborted 100

Dirty Page Table

pageID recLSN

P1 10
P2 20
P3 40

2



ARIES Features

Commit force-writes the log

• A commit record causes the current tail of the log to be forced to stable
storage. This immediately creates a permanent record about any commit-
ted transaction.

Flushing dirty pages written by the committed transaction occurs as a
background process afterwards and is not reflected in the log.

Write-Ahead Logging (WAL)

A more general rule (that causes commit records to force-write the log) is rep-
resented by the principle of write-ahead logging.

Write Ahead Logging Before any database page is flushed to disk (stable
storage), all log entries documenting changes on this page must be flushed
(forced) to the stable storage.

Write Ahead Logging insures that the log always contains accurate and
up-to-date record of changes in the database.

Checkpointing

At certain moments of time, DBMS performs a checkpointing operation. Two
records are inserted into the log:

begin checkpoint: a simple record is inserted to indicate the moment for which
checkpoint information is collected.

end checkpoint: a record containing the contents of Transaction Table and Dirty
Page Table at the begin checkpoint moment is inserted into the log.

Fuzzy Checkpoints

end checkpoint record can be large and creating it may take some time. During
this time DBMS can stop accepting any actions (“rigid” checkpoints) or it can
keep accepting action requests from transactions and log their actions (fuzzy

checkpoints).

In the latter case, the end checkpoint record contains the correct information
as of the time when begin checkpoint record had been added to the log.

ARIES in a nutshell

ARIES consists of three phases:

Analysis: the log is retrieved from stable storage and analyzed to find the
starting point for the next phase and the state of the data structures at
the moment of the crash.

Redo: the sequence of actions prior to the crash is redone, producing (alomst)
the state of the database prior to the crash.

3



Undo: all transactions, active at the time of the crash are aborted, their ac-
tions undone and the undos logged. When this phase ends, the database
recovers to a consistent state induced by the results of all transactions
committed prior to the crash.

Analysis

• Starts by recovering T-Table and DPT from the last end checkpoint record.

• Proceeds analyzing all log entries after the last begin checkpoint records
and updating T-Table and DPT accordingly.

• After the last log entry is analyzed, T-Table and DPT are restored to their
pre-crash state.

From this information, analysis phase determines:

• The starting point for the Redo phase. This will be the log record corre-
sponding to the smallest LSN recorded in the DPT. This corresponds to
the first buffer page update not guaranteed to be written to stable storage.

• A (superset) of dirty pages in the buffer. This is determined by the con-
tents of DPT.

• A set of active transactions. Determined by the contents of T-Table.

Redo

Redo stage

• starts at the point determined by Analysis stage. (minimum of recLSN
records from the final DPT).

• Reapplies all the updates for both committed and uncommited transac-
tions to the database.

• For transactions aborted prior to the crash, thier undo actions are also
reapplied.

Each update or undo operation must be reapplied unless:

• The affected page is not is DPT

• The affected page is in DPT but its recLSN is greater than the LSN of
current action.

• The pageLSN (stored on the page) is greater than or equal to the LSN of
the current log record.

When action is redone, pageLSN record is changed to the actions LSN.

Undo

Undo stage

• Performs actions necessary to abort all active and aborted transactions.

4



• T-Table computed during Analysis contains the list of transactions to be
aborted (loser transactions).

Undo Algorithm:

• Create (and maintain) ToUndo data structure. Undo should contain lastLSNs
from all loser transactions.

• On each step, Log record with largest LSN is chosen (and removed) from
ToUndo. Actions depend on its type:

– Update: Write a CLR and undo corresponding action. Insert prevLSN
into ToUndo.

– Undo: If UndoNextLSN is not NULL, add UndoNextLSN to ToUndo.
If UndoNextLSN is NULL, add end record to log and delete current
transaction for T-Table.

– Other: Insert prevLSN into ToUndo.

5


