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Distance/Similarity Measures

Terminology

Similarity: measure of how close to each other two instances are. The
“closer” the instances are to each other, the larger is the similarity value.

Dissimilarity: measure of how different two instances are. Dissimilarity
is large when instances are very different and is small when they are close.

Proximity: refers to either similarity or dissimilarity

Distance metric: a measure of dissimilarity that obeys the following
laws (laws of triangular norm):

• d(x, y) ≤ 0; d(x, y) = 0 iff x = y;

• d(x, y) = d(y, x);

• d(x, y) + d(y, z) ≥ d(x, z).

Conversion of similarity and dissimilarity measures.

Typically, given a similarity measure, one can “revert” it to serve as the
dissimilarity measure and vice versa.

Conversions may differ. E.g., if d is a distance measure, one can use

s(x, y) =
1

d(x, y)

or

s(x, y) =
1

d(x, y) + 0.5

as the corresponding similarity measure. If s is the similarity measure that
ranges between 0 and 1 (so called degree of similarity), then the corresponding
dissimilarity measure can be defined as

d(x, y) = 1 − s(x, y)
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or
d(x, y) =

√

(1 − s(x, y)).

In general, any monotonically decreasing transformation can be applied
to convert similarity measures into dissimilarity measures, and any mono-

tonically increasing transformtaion can be applied to convert the measures
the other way around.

Distance Metrics for Numeric Attributes

When the data set is presented in a standard form, each instance can be
treated as a vector x̄ = (x1, . . . , xN ) of measures for attributes numbered
1, . . . , N .

Consider for now only non-nominal scales.

Eucledian Distance.

dE(x̄, ȳ) =

√

√

√

√

(

N
∑

k=1

(xk − yk)2

)

.

Squared Eucledian Distance

dE(x̄, ȳ) =
N
∑

k=1

(xk − yk)
2.

Manhattan Distance.

dm(x̄, ȳ) =
N
∑

k=1

|xk − yk|.

Minkowski Distance.

Generalization of Eucledian and Manhattan distances:

dM,λ(x̄, ȳ) =

(

N
∑

k=1

(xk − yk)
λ

)

1

λ

.

In particular: dM,1 = dm, dM,2 = dE . Also of interest:

Chebyshev Distance.

dM,∞(x̄, ȳ) = max
k=1,...,N

(|xk − yk|).

Additivity.

Eucledian distance is additive: contributions to the distance for each at-
tribute are independent and are summed up.

Commesurability. Different attributes may have different scales of mea-
surement. Attributes are commesurable, when their numeric values con-
tribute equally to the actual distance/proximity between instantes.
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For example, is instances represent 3D positions of points in space, all
attributes are commesurable.

Standardized (Normalized) Eucledian Distance.

When some attributes are not commesurable with others, it may be pos-
sible “normalize” them by dividing the attribute values by the standard
deviation of the attribute over the entire dataset.

Range standadization. Each data point is standardized by mapping
from its current range to [0,1]. Each attribute value xi of the data point
x̄ = (x1, . . . , xN ) is standardized as follows:

x′

i =
xi − minȳ∈D(yi)

maxȳ∈D(yi) − minȳ∈D(yi)
.

z-score standadization . Assumes normal distribution of of attribute
values. Normalizes the data by using mean and standard deviation of the
values of the attribute.

Standard deviation for ith attribute:

σ̂i =

√

√

√

√

√





1

n − 1

n
∑

i=j

(x̄j [i] − µi)2



,

where n is the number of instances in the data set, and

µi =

∑n
j=1

x̄j[i]

n
,

is the mean of the ith attribute.

The z-score standardization of a vector x = (x1, . . . xN ) is:

x̂ = (x′

1, . . . , x
′

N ) =

(

x1 − µ1

σ̂1

, . . .
xN − µN

σ̂N

)

Standardized Eucledian distance is then:

dSE(x̄, ȳ) = dE(x̂, ŷ).

Weighted Distances.

Different attributes may also be of different importance for the purposes of
determining distance. Often, this importance is quantified as the attribute

weight. Given a vector w = (w1, . . . , wN ) of attribute weights, the weighted
Minkowski distance is computed as:

dWM,λ(x̄, ȳ) =

(

N
∑

k=1

wk · (xk − yk)
λ

)

1

λ

.

From here, we can derive formulas for weighted Eucledian and weighted
Manhattan distances.
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Distance Measures for Categorical Attributes

Distance Measures for Binary Vectors

Binary vectors. Vectors v̄ = (v1, . . . , vn) ∈ {0, 1}n.

Confusion matrix for binary vectors. Let x̄ = (x1, . . . , xn) and ȳ =
(y1, . . . , yn) be two binary vectors.

For each attribute i = 1 . . . n, four cases are possible:

No. xi yi

(1) 1 1
(2) 1 0
(3) 0 1
(4) 0 0

We count the incidence of each of the four cases and organize these num-
bers in a confusion matrix form:

xi = 1 xi = 0

yi = 1 A B

yi = 0 C D

‘

Symmetric attributes. Binary attributes are symmetric if both 0 and 1
values have equal importance (e.g. Male and Female or McCain and Obama).

If binary vectors have symmetric attributes, the following distance com-
putations can be performed:

Simple Matching Distance:

ds(x̄, ȳ) =
B + C

A + B + C + D
.

Simple Weighted Matching Distance:

ds,α(x̄, ȳ) =
α · (B + C)

A + D + α · (B + C)
,

or

ds,α(x̄, ȳ) =
B + C

α · (A + D) + B + C
.

Assymetric Attributes. Binary attributes are assymetric if one of the
states is more imortant than the other (e.g., true and false, present and
absent). We assume that 1 is more important than 0.

Jaccard distance:

dJ(x̄, ȳ) =
B + C

A + B + C
.

Weighted Jaccard Distance
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dJ,α(x̄, ȳ) =
α · (B + C)

A + α · (B + C)
.

dJ,α(x̄, ȳ) =
B + C

α · A + B + C
.

Non-binary categorical attributes

Simple Matching distance.

ds(x̄, ȳ) =
n − q

n
,

where:

n : number of attributes in x̄ and ȳ.
q : number of attributes in x̄ and ȳ that have matching values.

Using Covariances to compute distances.

Sometimes, some attributes/dimensions correlate with each other (e.g., dif-
ferent measurements of the same feature). If not accounted for, such at-
tributes may “hijack” the distance computation.

Geometric intuition: generally, we consider all attributes to correspond to
independent orthogonal dimensions. Attributes that are not independent do
not correspond to orthogonal dimensions.

We can use correlation coefficients and covariance coefficients to correct
our distance computation.

Sample Covariance

cov(i, j) =
1

n

n
∑

k=1

(xki − µi)(xkj − µj),

where µi and µj are sample means for ith and jth attributes respectively.
We can construct matrix C = (cov(i, j)) of covariances. C is symmetric.

We can also standardize covariance coefficients. Correlation coefficient is
computed as:

ρ(i, j) =

∑n
k=1

(xki − µi)(xkj − µj)

(
∑n

k=1
(x − µi)2

∑n
k=1

(x − µj)2)
1

2

.

We can form the matrix S of correlation coefficients ρ(i, j).

Covariance/correlation coefficients can only capture linear dependency be-
tween the variables. Non-linear relations are left “out”.

Mahalanobis Distance.

dMH(x̄, ȳ) = (x̄ − ȳ)TS−1(x̄ − ȳ).

Note: here x̄, ȳ are treated as columns.
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