CSC 560 Advanced DBMS Architectures

Alexander Dekhtyar.

Concurrency Control
Serializable Schedules and Locking Protocols

Serializability Revisited

Goals of DBMS:

1. Ensure consistency of database states.

2. Process transactions efficiently.

Serial schedules ensure database consistency, but serial execution of trans-
actions is inefficient.

Serializable schedules are defined in order to bridge the gap between consis-
tency and efficiency.

e As their outcome must be equivalent to the result of some serial sched-
ule, serializable schedules are guaranteed to preserve consistency of
the database

e As they are not required to be serial, serializable schedules allow for
interleaving of actions from different transactions.

Question 1: How much concurrency is allowed by serializable
schedules?

Given transaction T, we denote as dom(T') the set of all database objects
that T acesses (both in read and write modes).

Proposition 1 Let T1 and T2 be two transactions such that dom(T1) N
dom(T2) = 0. Then

1. Both serial schedules T'1;T2 and T2;T1 result in the same database
state.

2. Any valid schdule over T'1 and T2 is serializable.

Proof. (sketch)

1. To prove that both serial schedules result in the same database state,
we examine the resulting value of each database object in D = dom(T'1)U
dom(T?2). If A € D, then by our assumption, either A € dom(T'1) and
A & dom(T'2) or vice versa. Therefore, its value gets modified by only
one transaction, and does not change throughout the execution of the
second transaction.

2. We notice that any schedule over the set {7'1,72} has no RW, WR
oe WW conflicts. Then the statement follows from the following,
more general lemma.

Lemma 1 Let S be a schedule without conflicts over two committed
transactions T1 and T2. Then S is a serializable schedule.

Proof.(sketch) We need to show that the final state of the database after S
is executed is equivalent to the final state of the database after either 1T'1; 72
or T2;T1.

We consider all objects in dom(T'1) U dom(T2). Two possibilities arise:

1. dom(T1) Ndom(T2) # 0. In this case, one or more objects T'1 and T2
access are the same. Given an object A € dom(T'1) N dom(1'2), there
are only two possibilities: (i) either both T'1 and T2 have read-only
access to A or (ii) one of the transactions accesses A after the other
transaction has committed.

If there is at least one object A € dom(T1) N dom(T2) for which
(ii) holds, then we claim that this object uniquely defines the serial
schedule to which S is equivalent. Indeed, assume that A is accessed
first by T'1 and then — by T2 after T'1 commits.

We claim that S in this case is equivalent to 7'1; T'2. Clearly, the value
of A after S is equivalent to the value of A after T'1;T2. The values
of all objects B € dom(T'1) Udom(T2) — dom(T1) N dom(T'2) after S
will match those after T'1; 72 (see Proposition 1.1).

Let A" € dom(T1) Ndom(T'1). If both T'1 and T2 only read A’ then
its value after S will be the same as its value after T'1;T72. We need
to show that it is impossible for transaction 72 to modify A’s value
before T'1. This is indeed so. We know that T'1 accesses A’s value.

If T1 writes A’s value, T2 cannot access A’ until after T'1 commits (as
S is conflict-free), therefore the final value of A’ will be the same as in
the serial schedule 7'1;T2.

If T1 reads A’s value, T2 cannot write it until 71 commits (otherwise,
a conflict would be registered in S). This, however means that again,
the final value of A’ is determined by T2, and therefore is equal to that
of T'1; T2 serial schedule, which proves the first part of the lemma.

2. dom(T1)Ndom(T2) = (). This is really Proposition 1.2. From Proposi-
tion 1.1 we know that both T1; 72 and T2; T2 yield the same database
state. Simple analysis of the values of each object in dom(T'1) U
dom(T2) after S ends shows that these values will be the same as
those in any serial schedule.

From the two result above, we notice that

e Serializable schedules allow for arbitrary interleaving of the transactions
that access completely different sets of database objects.

e Serializable schedules do allow certain degree of interleaving when trans-
actions access the same object.

e All conflict-free schedules are serializable.

One would want to know if the revese of the latter is true:

Question 2: Are all serializable schedules conflict-free?

The answer to this question is NO.

Below is an example of a serializable schedule that is not conflict-free (con-
tains an unrepeatable read).

T1 | T2
R(A)

W(A)
commit

commit

The schedule above is equivalent to serial schedule 71;72. There is an
RW conflict in the schedule, but it never “materializes” to affect the out-
come.

Locking

Goal of DBMS (revised):
Ensure serializability of all schedules.

To achieve this goal, DBMS may want to ensure the following properties
of its schedules:

e If some transaction T has read some object A, no transaction 7" can
write A until 7' commits or aborts.

e If some transaction 7' has written some object A, no transaction T”
can access A until T aborts or commits.

Object Locking has been proposed as the way to assure these properties
of the schedules.

Lock: permission by a DBMS to a transaction to access the content of a
particular database object.

Shared Lock: permission to read the value of the object. More than one
transaction can hold a shared lock on the same object at the same
time.

Exclusive Lock: permission to write the value of the object. At most one
transaction can hold an exclusive lock on an object at a time, and
no shared locks are allowed by other transactions on an object for
which an exclusive lock exists.

New Rules For Transaction Processing

e Before accessing a database object, any transaction must request an
appropriate lock on it.

e If the lock is granted by the DBMS, the transaction may proceed.

e [f the lock cannot be granted immediately, the lock request is queued
and the transaction is suspended until the lock can be granted.

e Transaction must release all the locks it holds before it terminates
(commits or aborts).

Notation: S(A) — request for a shared lock on object A. X(A) — request
for an exclusive lock on object A. U(A) — request to release current lock
on the object A.

Note: We assume that abort and commit commands result in automatic
release of all locks held by a transaction at that time, therefore, we do not
specify all unlock requests explicietely, unless necessary.

Scheduling with locking is illustrated in the following example:

T1 T2 T3
S(A)
X(A)
R(A)
X(B)
S(A)
R(A)
U(A)
W(B)
commit
R(A)
commit
W(A)
commit

T1 T2
X(4)
X(B)
W(A)
W(B)
U(B)
X(A)
U(A)
w(4)
X(B)
W(B)
commit
commit

Figure 1: Non-serializable schedule with locking.

e Locking by itself does not guarantee serializability of schedules.

This is illustrated by the schedule in Figure 1

In this schedule, the value of object A in the final state is written by 72 and
the value of object B — by T'1, therefore it is not a serializable schedule.

Locking Mechanisms: 2-Phase Locking

Locking Mechanism: set of rules for locking and unlocking objects.

We want the locking mechanism to produce only serializable schedules.

2-Phase Locking (2PL)

2-Phase Locking (2PL) works according to the following two rules:

1. If a transaction 7' wants to read/write an object A, it must first
request a shared/exclusive lock on A.

2. Once a transaction released one lock it cannot request any addi-
tional locks.

Informally, with 2-Phase Locking, the life of any transaction consists of
two periods (phases): (i) the period during which the transaction acquires
new locks (growing) and (ii) the period during which the transaction releases
its locks (shrinking).

It is easy to see that schedule from Figure 1 does not satisfy the conditions
of 2PL as transaction T'1 acquires a lock on B after it has released its lock
on A.

T1 T2
X(A) ?(T T2
X(B) ()
X(A) X(A)
i W (4)
i o
X(B
W(B) ;V((él))
commit
W(5) o
commit

Figure 2: Schedules that follow 2PL (left) and Strict 2PL(right) locking
mechanisms.

Strict 2-Phase Locking (Strict 2PL)

Strict 2-Phase Locking is a modification of 2-Phase Locking which
disallows nontrivial shrinking phase in any transaction. It can be described
as follows:

1. If a transaction 7" wants to read/write an object A, it must first
request a shared/exclusive lock on A.

2. Once a transaction have acquired a lock it cannot release it until
it commits or aborts.

Figure 2 contains the examples that illustrate 2PL and Strict 2PL lock-
ing mechanisms. The schedule on the left satisfies 2-Phase Locking re-
quirements, but will not be accepted according to Strict 2-Phase Lock-
ing. The schedule on the left satisfies both 2PL and Strict 2PL mecha-
nisms.

Properties of 2 Phase and Strict 2 Phase Locking

Questions
e Want mechanisms for producing serializable schedules.
e locking and locking mechanisms required.

e 2 Phase Locking and Strict 2 Phase Locking.

Question 1 Are the schedules produced by 2PL/ Strict 2PL serializable ?

Question 2 Are all serializable schedules produced by 2PL (Strict 2PL)?

Question 3 What is the difference between 2PL and Strict 2PL ?

Question 4 How do we characterize the schedules produced by 2PL / Strict
2PL 7

Conflict Serializability

Let us consider for now only schedules consisting of committed transac-
tions.

Dependency (Serializability) Graph.

Let S be a schedule over the set of transactions 7 = {T'1,...,TN}. A
dependency graph of S, denoted Gg, is defined as follows:

e The set of nodes of Gg is 7.
e (Gg has an edge from T to T'j labeled with a database object A if

1. both T and T'j access some object A;
2. at least one of these accesses is a write;

3. no other transaction accesses A between T'i’s and T'j’s accesses.

Conflict Equivalence.

Two schedules S1 and S2 over the set of transactions 7 are conflict-
equivalent iff Gg1 = Ggo.

Conflict Serializability.

A schedule S is conflict-serializable iff it is conflict-equivalent to some
serial schedule.

Figure 3 shows three different schedules for the same set of transactions
7 = {T'1,T2}. Schedule S1 is not serializable as at the end A will have value
set by T2 and B will have value set by T'1. Schedule S3 is serial. To see that
schedule S2 is conflict-serializable, we construct the dependency graphs Gg1,
Gs2 and Gg3 (see Figure 4).

Relationships Between Schedule Types

Theorem 1 A conflict serializable schedule over a static database is
serializable.

The requirement that the database is static, i.e., no new objects created
and no existing objects deleted while the schedule is executed is IMPORTANT.
We will discuss this requirement and predicate locks later in the course.

The inverse of Theorem 1 is not true as manifested in the counterexample
on Figure 5. Here, the schedule depicted is equivalent to the serial schedule
T1;T2;T3 (because T'3 blindly overwrites the actions of 7'1 and 7'2) but it

S1:

T1 T2
X(A)
S(0)
R(C)
X(B)
W(A)
W(B)
U(B)
X(A)
U(A)
w(4)
X(B)
W(B)
commit
commit

S2:
T1 T2
X(A)
X(B)
S(C)
R(C)
X(A)
W(A)
U(A)
X(B)
W(B)
commit
W(B)
W(A)
commit

S3:

T1 T2

X(A)

X(B)

W(A)

W(B)

commit
S(C)
R(C)
X(A)
X(B)
W(B)
W(A)
commit

Figure 3: Non-serializable, conflict-serializable and serial schedules.

Figure 4: Dependency Graphs for schedules S1, S2 and S3.

T1 T2 T3
X(4)
R(A)
X(4)
U(A)
W(A)
commit
X(A)
X(A)
W(A)
commit
W(4)
commit

Figure 5: A serializable schedule that is not conflict-serializable.

is not conflict-equivalent to any serial schedule (as can be verified by building
appropriate graphs).

Note: Conflict-serializability is a syntactic property of a schedule while serial-
izability is a semantic property. Conflict-serializability is a stronger property.

Lemma 2 1. The dependency graph for a serial schedule is acyclic.

2. A schedule is conflict-serializable iff its dependency graph is acyclic.
Theorem 2 Let S be a schedule generated according to a 2 Phase Lock-
ing Mechanism over a set of transactions T = {T'1,...,TN}. Then Gg is
acyclic.

From Lemma 2 and Theorem 2 we infer

Theorem 3 Any schedule produced by 2 Phase Locking mechanism is conflict-
serializable (and hence, serializable).

2 Phase Locking vs. Strict 2 Phase Locking

Theorem 4 FEvery schedule conforming to Strict 2 Phase Locking also con-
forms to 2 Phase Locking.

Question 5: What schedules are excluded by Strict 2PL 7

Strict Schedules.

A schedule S over the set of transactions 7 = T'1,... TN is called strict iff
any value written by any transaction T to any database object A does not
get accessed by other transactions until T terminates (commits or aborts).

T1 T2
X(4)
X(A)
R(A)
W(A)
X(B)
U(A)
R(A)
W(4)
X(0)
R(B)
w(C)
commit
abort

Figure 6: 2 Phase Locking in insufficient to ensure strictness of the sched-
ules.

Theorem 5 Any schedule produced by Strict 2 Phase Locking Mechanism is
strict.

Question 6: Why is strictness of schedules improtant.

In a non-strict schedule, if a transaction aborts, it may cause other trans-
actions to abort.

Figure 6 illustrates (i) the problems with non-strict schedules in the
presence of aborted transactions and (ii) that 2 Phase Locking may produce
non-strict schedules.

When transaction 72 commits, the changes it makes to data become per-
manent. However, when T'1 aborts, the changes it made to object A should
be rolled back. However, the changes made by 72 to A and (possibly) C
depend on the value of A as written by T'1. Therefore, after T'1 aborts, the
results of T2 become stale and have to be undone.

Bottomline: Strict 2 Phase Locking ensures that no transaction has access
to data that may become stale, by enforcing strictness of the schedules gen-
erated by it. Because of this, desptite the extra limitations Strict 2PL puts
on interleaving of transactions, it is preferable to simple 2 Phase Locking.

10

