
. .
CSC 560 Advanced DBMS Architectures Alexander Dekhtyar
. .

Overview of Data Storage in RDBMS

Physical Characteristics of Disks

A disk driveconsists of

• disk assembly: part of the disk drive that contains the physical data storage.

• head assembly: part of the disk drive that containsheadsfor accessing data.

Disk assemblyconsists of disk platters. Each platter has two surfaces.

Disk surfacesare partitioned into circulartrack, each consisting of a number of
sectors.

A collection of tracks equidistant from the center on all surfaces is called acylinder.
(in other words: the tracks that are under the disk head at thesame time).

Disk Access

A disk block or pageis a logical unit of data storage whichcan be read from disk
in a single disk access command.

Often a disk block is equal in size to a disk sector, or a small number of disk
sectors (2,3,4).

Disk latency: time between a disk access command is issued and the data is de-
livered from disk to main memory. Disk latency consists of the following compo-
nents:

• disk controller processing time (typically, fraction of a ms.);

• seek time: time it takes to move disk head to the correct cylinder (10-40ms);

• rotational latency: time it takes to rotate the disk (10ms for a full rotation);

• transfer time: the time it takes to read in all the sectors of the block. (∼

10Mb/sec).

1



I/O model of Computation

Observations:

• In database applications, the amount of data exceeds main memory capacity
of the computers.

• When data is stored in secondary storage (on disks),data access time dom-
inates all other computation times during query execution.

Conclusions:

• Efficiency of query processing in DBMS needs to be measured w.r.t. disk
access it requires, rather than w.r.t. computational complexity of the algo-
rithms.

• It is of utmost importance to implement efficient disk accessin DBMS.

• Efficient disk access can be implemented as follows:

– Confine all disk access in DBMS toblock/page access.That is, all disk
access commands in DBMS must access a full disk block.

– Develop and implement techniques for efficient storage and access data
stored in disk blocks.

To ensure that data stored in databases is retrieved efficiently, DBMS choose the
following data storage approach:

• A block or disk pageof a specific size is selected. The size of a block cannot
be too large — this may lead to wasted space, but should not be too small —
this will increase the number of disk access operations.

• Each relational table, and all supplemental index structures are stored
as collections of blocks/pages on disk.

Standard block sizes are 2, 4, 8, 16Kb. Larger blocks are usedless often.

Data Storage Techniques

Cylinder-based Organization. Store consecutive blocks on a single cylinder (on
different surfaces). Improves seek time for consecutive read operations. But if
access requests are “random”, will not help.

Use of Multiple Disks. Multiple disks mean multiple disk controllers, which
means, more disk access requests per time unit can be satisified. But requires extra
investment in the disk infrastructure.

Mirroring. Here, multiple disks are used again, each repeating the datastored on
other disks. This improves the response times and the numberof requests processed
per time unit, but has higher cost and poses issues when data is updated.

2



Elevator Algorithm. If multiple disk access requests come to disk controller
at the same time, we can schedule them using the same principles as are used in
elevator operation - assuming the disk head is our “elevator” and tracks are “floors”.
This can streamline processing of multiple requests, but isnot as efficient for non-
busy request schedules.

Prefetching/Double Buffering. Sometimes it is possible to “know” which blocks
will be needed and schedule their optimal retrieval before the actual access requests
arrive. But, prefetching requires extra main memory.

Storing Relational Data in Disk blocks.

Note, the the solution proposed below is by far, not the only possible. There may
be a lot of different ways to store relational data on disk, e.g., grouping attributes
together, usingonly index structures, storing data from different tables in thesame
file, etc... As we discuss the traditional storage techniques, it will become apparent
why they are used and are considered efficient.

Each relational table is stored on disk as a single file, broken into a sequence
of disk pages. Individual blocks may be located in differentplaces on disk (dif-
ferent surfaces, tracks, cylinders, etc. . . ), but all content within a single page is a
consequtive seqence of bytes.

A disk block is typically equal to one or moresectorsof the disk. Note that
sectoris a term that describes physical properties of the disk, while blockandpage
describe logical constructs.

A typical relational table file consists of

1. Header page, the first page of the file.

2. Data pages, all remaining pages in the file.

Occasionally, depending on the types of data stored in the relational table, other
types of disk pages may be present in the file as well. The structure of a relational
table file is shown on Figure 1.

Header page

A header page is the first page/block of any database file. This page does not
contain any relational data from the database. Rather it contains useful information
about the file itself, as well as meta-information about the relational table.

The following information can be stored on the header page:

• Format identification information (something that tells DBMS, “I am your
file”);

• Relational table schema information;

• Record structure information: sometimes record structureon disk is different
than the logical structure of the table.

• Record size;

3



Header Data Data

Data

Data Data

Data Data

An overview of a Relational Table File structure

Figure 1: Database files on disk.

• Starting points/pointers for various linked lists within the table file:

– Full ordered list of blocks;

– List of blocks with open space;

• Indexing information fornon-heapdatabase files (we will look at how records
are organized in the file below);

• Various timestamps.

• etc. . .

Generally speaking, the size of the block is typically more then enough to accom-
modate any information DBMS designer finds useful to store inheader pages.

Data page

Figure 2 shows the structure of a data block. It consists of

1. Block header, a sequence of bytes (typically at the beginning of the page)that
stores information about the current state of the disk page and any linked list
pointers for the entire file.

2. Data records: the main portion of the disk page is broken intorecords, se-
quences of bytes storing data from a single row or the relational table.

3. unused space: any leftover space that cannot be used to store a full record.

Storing Data in Disk Records

Eachrecord stores information about a single tuple. It is broken into parts repre-
senting values of each individual attribute of the tuple. Inaddition, records may
contain some extra information.

4



����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

Header

Record1
Record2
Record3
Record4

RecordN
Unused

...

Figure 2: Data Page/Block structure in a nutshell

Representing Attributes

Attribute Type Storage Requirements

INTEGER 2 or 4 bytes
FLOAT 4 or 8 bytes
CHAR(n) array ofn bytes; unused bytes marked with⊥ (“pad”) character
VARCHAR(n) Length+content: array ofn + 1 bytes; first byte holds # bytes in string,

remaining bytes hold string content;
Null-terminated string: array ofn + 1 bytes, filled with string characters,
terminated bynull character

BIT(n) array of(ndiv8) + 1 bytes
Enumerated types Map values to integers, store asINTEGER value
DATE, TIME Converted intoINTEGER

Grouping Attributes in Records

Most DBMS use records offixed size. Here we will concentrate on such records.
Other applications, e.g., Information Retrieval, requirerecords of varying size.
These will be discussed separately later.

Building Fixed-size Records

First approach to building a record is toconcatenate the represenations of the tu-
ple’s attributes (a.k.a., fields) together. However, in doing so, the following rules
must be observed:

• INTEGERvalues (for 4-byte integers) must start at positions divisible by 4.

• FLOAT values (for 8-byte floating point numbers) must start at positions
divisible by 8.

5



• Sometimes, the rule is that all other fields must start at positions divisible by
4.

If there are fields of sizes not divisible by 4, or if concatenation leads to INTE-
GERs and FLOATs starting at wrong positions, the following can be done to rectify
the situation:

• Padding: empty, unused bytes are added between the fields to ensure that
the next field starts at the right position/offset.

• Field reodering: the record is built by fist putting all FLOAT values, then
all INTEGER values, then all other values. Because this structure may differ
from the order of attributes specified byCREATE TABLE statement, the
new order of attributes needs to be recorded somewhere (e.g., in the header
page of the file).

Record Headers

In addition, records can containheaders. The choice of whether to include a record
header, and what information to put in it is up to the DBMS designer. Record
headers for fixed-size records can contian the following information:

• Record schema/pointer to the place in the file where record schema is stored
(may also be contained in the block header).

• Length of the record.

• Timestamps for record modification/access

• Record state (active/deleted), a.k.a, “tombstone”.

Block Headers

Block Headers typically store information about the current state of the block,
and the block’s “position” in the overall file. The information stored in the header
is determined by the DBMS designer. Typically, it may include the following:

• Block ID;

• Links to other blocks in the file:

– next/previous block in the block order in the file;

– next/previous block that has space avaialble for new records;

– next/previous block in an special indexing order;

• Information about the relation, relational schema/pointer to the schema.

• General information about records in the block: record size, total number of
slots, number of used records, etc...

• Information about availble record space on the block:

6



– Number of available slots/records;

– Record availability bitmap;

• Timestamps.

Maintenance of Data Stored on Disk

Data Organization in a File

Individual records can be organized in a number of differentways in the database
file.

Heap File Organization. Heap File denotes a record organization method where
records are stored on disk pages on first-come — first-serve basis, in no
particular order. That is, any record can be placed anywherein the file,
subject to space availability.

Sequential File Organization. A search keyis defined for the relation, and records
are stored ordered according to the search key. Note that thesearch keyneed
not be a primary key, or even a superkey of the relation being stored. New
records must be inserted according to their search key value.

Hashing File Organization. Records are hashed on some attribute value. Each
hash value is associated with a block (sequence of blocks is overflow buckets
are needed) where the record is to be stored.

Record Modifications

We need to discuss three basic types of modification:

• Record Insertion

• Record Deletion

• Record Update

Insertion

Record insertion procedures are different for different file organizations.

Insertion into a Heap File

To insert records into a heap file, it is convenient to keep a (double-)linked list of
all heap file pages with available space. The pointer to the first page of the list can
be stored on theheader page. The pointers to next/previous page on the list can be
stored in theblock headers.

Assuming existance of such support, insertion of a record into a heap file can be
done as follows:

7



Algorithm InsertRecordHeap(File F, Record R)

begin
HeaderPage = ReadBlock(F,1); // Retrieve the header page of the file
FreeSpacePageId = HeaderPage.FreeSpaceList;

Block = ReadBlock(F,FreeSpacePageId); // Retrieve the block
RecordNum = FindFreeSlot(Block); // find a free slot
Put(R, Block, RecordNum); // write the contents of R into the

// available slot
if (No more free space left in Block)

begin
HeaderPage.FreeSpaceList = Block.FreeSpaceListNext;
NextBlock = ReadBlock(F,Block.FreeSpaceListNext);

NextBlock.FreeSpaceListPrevious = 1;
WriteBlock(NextBlock, F, Block.FreeSpaceListNext);

end

WriteBlock(Block, F, FreeSpacePageId); // write the data back to disk
WriteBlock(HeaderPage, F, 1);

end

Notice that this algorithm assumes thatFreeSpacePageId is not NULL. If it
is NULL, then a new page needs to be created, and the records needs to be put on
it.

Finding a free slot on the disk page

There is a number of ways by which a free slot can be found on thedisk page. All
the computations occur in main memory and do not have I/O costs associated with
them.

1. Direct Scan. Each record contains atombstone- a byte indicating whether
it is active or deleted. The disk page is scanned until the first record with the
tombstoneset to“deleted” is found.

2. Bitmap. Record header contains a bitmap, specifying which of the records
on the page are available. Instead of the entire disk page, the bitmap is
scanned until the first available slot is discovered. After the record is in-
serted, the bitmap must be updated.

Insertion into a Sequential File.

When data is inserted into a sequential file, the following must be observed:

• The record needs to be inserted according to the value of its key.

8



• The file needs to be scanned (or an outside index needs to be used) to find
the disk block where there record must be inserted.

• If there is no empty slot at the location where the record needs to be inserted,
record slidingmust be used to shift all subsequent records on the page (as-
suming there is space available). This operation is as simple byte copy, so it
can be performed fast.

• If there is not space on the page, two possibilities can be considered:

– Record sliding to next page. If the next disk block has enough space,
we can do record sliding and put some overflow records on the next
page, using record sliding there as well.

– Overflow page. Alternatively, a new disk block can be allocated. The
disk block is inserted between the current block and the nextblock in
thesearch keyorder. The contents of the current block are split roughly
evenly between the old block and the new block, after which the new
record is inserted in its designated location (which can be either on the
old page, or on the new one).

Insertion into a Hashed File.

Insertion into ahashed fileproceeds in two steps.

Step 1: The hash key of the record being inserted is computed, and thedisk page(s)
for the hash bucket is/are identified.

Step 2: An empty slot is found on one of the pages of the hash bucket (ifnot - a
new page is added to the hash bucket), and the record is inserted into that
slot. The procedure is similar to the one used for aheap file.

Deletion

Unlike insertion, methodology of record deletion does not depend on the type of
file used to store the relational table.

Some traditional approaches to deletion are:

Deletion with slide: The deleted record creates a “gap” on a disk page. To cover
this gap, the records following the gap on the disk page are shifted left, cov-
ering the gap, and moving the empty slot to the end of the page.

Advantages: Free space is always located only at the end of the disk page.
One pointer in the block header (or simply a count of occupiedslots for fixed-
length records) is sufficient to keep track of free space within the block.

Disadvantages: The deleted record gets immediately overwritten. This re-
moves the possibility of an easy “undo” action.Additionally, this complicates
handling dangling pointers to the deleted record (the pointers will now point
at a completely different “live” record).

Deletion without slide: The slot of the deleted record is declared available, and
the record itself is marked as deleted (by activating the tombstone flag, for

9



example), but the actual space occupied by the record stays as-is. The record
can be later overwrritten, when a new record is inserted in the same space.

Advantages: Simplicity. This method requires little extra actions, save for
changing the status of the slot to “available”.

Disadvantages: Gaps in the disk page. This means that more space or
more complicated organization is needed to keep track of free space on the
page. Possible solutions include a bitmap in the disk header, or a linked list
of all available slots: the pointer to the first available slot is stored in the disk
header, while all subsequent pointers are stored in the records themsleves.

Deletion without giving up space: The record is marked as deleted, but the space
is not freed. No new record can be stored in this space until a major DB
reconstruction/reconciliation occurs.

Advantages: Ensures proper handling of all “dangling pointers”.

Disadvantages: The relation grows in size with every insertion. Deletions
do not decrease the space alotted for the insertion.

Additionally, deletions may lead to removal of disk pages from the file. There is
a number of approaches here.

• “Lazy evaluation.” The disk page is removed only when it contains no live
records on it. Disk pages are never merged.

• “Eager evaluation.” Each time a deletion occurs, the system checks whether
current disk page can be merged with one of its neighbors. If the answer is
yes, such merger is performed. The minimal criterion for merger is the abil-
ity to fit all records into the free space available in the two neighboring pages.
Other, stricter criteria (e.g., requiring at least a few empty slots available in
the resulting blocks) are also possible.

Update

For fixed-length record,record updatesdo not change the storage. The basic algo-
rithm is the same: the block with the desired record is located on disk (via scan,
index structure or other means), the disk page is retrieved,the record is found,
update it performed, and the block is flushed back to disk.

10


