bSC 560 Advanced DBMS Architectures

Alexander Dekhtyaf

Overview of Data Storage in RDBMS

Physical Characteristics of Disks

A disk driveconsists of

e disk assembly: part of the disk drive that contains the piayslata storage.

e head assembly: part of the disk drive that cont&ieadsfor accessing data.

Disk assemblyconsists of disk platters. Each platter has two surfaces.

Disk surfacesare partitioned into circulatrack, each consisting of a number of
sectors

A collection of tracks equidistant from the center on alfaces is called aylinder.
(in other words: the tracks that are under the disk head aairee time).

Disk Access

A disk block or pageis a logical unit of data storage whichn be read from disk
in a single disk access command.

Often a disk block is equal in size to a disk sector, or a smathimer of disk
sectors (2,3,4).

Disk latency time between a disk access command is issued and the daa is d
livered from disk to main memory. Disk latency consists @ tbllowing compo-
nents:

o disk controller processing time (typically, fraction of &)
e seek timetime it takes to move disk head to the correct cylinder (0frd);
e rotational latency time it takes to rotate the disk (10ms for a full rotation);

o transfer time the time it takes to read in all the sectors of the block. (
10Mb/sec).

I/O model of Computation
Observations:

¢ In database applications, the amount of data exceeds mamom&apacity
of the computers.

e When data is stored in secondary storage (on diskdy access time dom-
inates all other computation times during query execution

Conclusions:

e Efficiency of query processing in DBMS needs to be measured wlisk
access it requires, rather than w.r.t. computational cerilyl of the algo-
rithms.

e Itis of utmost importance to implement efficient disk acdesSBMS.
o Efficient disk access can be implemented as follows:
— Confine all disk access in DBMS bbock/page accessThat is, all disk

access commands in DBMS must access a full disk block.

— Develop and implement techniques for efficient storage andss data
stored in disk blocks.

To ensure that data stored in databases is retrieved efficiBBMS choose the
following data storage approach:

e A block or disk pageof a specific size is selected. The size of a block cannot
be too large — this may lead to wasted space, but should nooteall —
this will increase the number of disk access operations.

e Each relational table, and all supplemental index structues are stored
as collections of blocks/pages on disk

Standard block sizes are 2, 4, 8, 16Kb. Larger blocks are lessdften.

Data Storage Techniques

Cylinder-based Organization Store consecutive blocks on a single cylinder (on
different surfaces). Improves seek time for consecutiaal reperations. But if
access requests are “random”, will not help.

Use of Multiple Disks. Multiple disks mean multiple disk controllers, which
means, more disk access requests per time unit can be edtigfit requires extra
investment in the disk infrastructure.

Mirroring. Here, multiple disks are used again, each repeating thesttaissd on
other disks. This improves the response times and the nuphbeguests processed
per time unit, but has higher cost and poses issues whensdapalated.

Elevator Algorithm. If multiple disk access requests come to disk controller
at the same time, we can schedule them using the same pem@plare used in
elevator operation - assuming the disk head is our “eleVatat tracks are “floors”.
This can streamline processing of multiple requests, bubiss efficient for non-
busy request schedules.

Prefetching/Double Buffering. Sometimesiitis possible to “know” which blocks
will be needed and schedule their optimal retrieval befleeaictual access requests
arrive. But, prefetching requires extra main memory.

Storing Relational Data in Disk blocks.

Note, the the solution proposed below is by far, not the only pdssibhere may
be a lot of different ways to store relational data on disg,,erouping attributes
together, usin@nly index structures, storing data from different tables ingame

file, etc... As we discuss the traditional storage techrggiievill become apparent
why they are used and are considered efficient.

Each relational table is stored on disk as a single file, brak a sequence
of disk pages. Individual blocks may be located in differplatces on disk (dif-
ferent surfaces, tracks, cylinders, etc...), but all contethin a single page is a
consequtive segence of bytes.

A disk blockis typically equal to one or morsectorsof the disk. Note that
sectoris a term that describes physical properties of the diskiedthock andpage
describe logical constructs.

A typical relational table file consists of
1. Header page, the first page of the file.

2. Data pages, all remaining pages in the file.

Occasionally, depending on the types of data stored in th&aral table, other
types of disk pages may be present in the file as well. Thetateiof a relational
table file is shown on Figure 1.

Header page

A header page is the first page/block of any database file. This page does not
contain any relational data from the database. Rather fagmuseful information
about the file itself, as well as meta-information about #ational table.

The following information can be stored on the header page:

e Format identification information (something that tells BB, “I am your
file”);

o Relational table schema information;

e Record structure information: sometimes record struaiardisk is different
than the logical structure of the table.

e Record size;

An overview of a Relational Table File structure

Header Data Data Data Data

Data Data Data

Figure 1. Database files on disk.

e Starting points/pointers for various linked lists withirettable file:

— Full ordered list of blocks;
— List of blocks with open space;

¢ Indexing information fonon-heapatabase files (we will look at how records
are organized in the file below);

e Various timestamps.

e etc...

Generally speaking, the size of the block is typically mbemtenough to accom-
modate any information DBMS designer finds useful to storeader pages.

Data page
Figure 2 shows the structure of a data block. It consists of

1. Block headera sequence of bytes (typically at the beginning of the ptg)
stores information about the current state of the disk pageaay linked list
pointers for the entire file.

2. Data records the main portion of the disk page is broken imézords se-
guences of bytes storing data from a single row or the relatitable.

3. unused spaceny leftover space that cannot be used to store a full record

Storing Data in Disk Records

Eachrecord stores information about a single tuple. It is broken intdgpeepre-
senting values of each individual attribute of the tuple.atidition, records may
contain some extra information.

Header

Recordl

Record2

Record3

Record4

RecordN

Unused

Fig

ure 2: Data Page/Block structure in a nutshell

Representing Attributes

| Attribute Type

\ Storage Requirements

| NTEGER 2 or 4 bytes

FLOAT 4 or 8 bytes

CHAR(n) array ofn bytes; unused bytes marked with(“pad”) character

VARCHAR(n) Length+contentarray ofn + 1 bytes; first byte holds # bytes in string,
remaining bytes hold string content;
Null-terminated stringarray ofn + 1 bytes, filled with string characters,
terminated bynull character

BI T(n) array of(ndi v8) + 1 bytes

Enumerated types Map values to integers, store BSITEGER value

DATE, TI ME Converted intd NTEGER

Grouping Attributes in Records

Most DBMS use records dfxed size Here we will concentrate on such records.

Other applications

, €.0., Information Retrieval, requieeords of varying size.

These will be discussed separately later.

Building Fixed-size Records

First approach to building a record is ¢oncatenate the represenations of the tu-
ple’s attributes (a.k.a., fields) togethdrowever, in doing so, the following rules

must be observed

e INTEGERvalues (for 4-byte integers) must start at positions diésby 4.

e FLOAT values (for 8-byte floating point numbers) must start at tposs

divisible by 8

e Sometimes, the rule is that all other fields must start atiposi divisible by
4.

If there are fields of sizes not divisible by 4, or if concatéraleads to INTE-
GERs and FLOATs starting at wrong positions, the followiag be done to rectify
the situation:

e Padding: empty, unused bytes are added between the fields to engure th
the next field starts at the right position/offset.

e Field reodering: the record is built by fist putting all FLOAT values, then
all INTEGER values, then all other values. Because thisgira may differ
from the order of attributes specified IGREATE TABLE statement, the
new order of attributes needs to be recorded somewhergifethe header
page of the file).

Record Headers

In addition, records can contdieaders The choice of whether to include a record
header, and what information to put in it is up to the DBMS dgmrsr. Record
headers for fixed-size records can contian the followingrmftion:

e Record schema/pointer to the place in the file where recdresa is stored
(may also be contained in the block header).

e Length of the record.
e Timestamps for record modification/access

e Record state (active/deleted), a.k.a, “tombstone”.

Block Headers
Block Headers typically store information about the current state of theck,

and the block’s “position” in the overall file. The informati stored in the header
is determined by the DBMS designer. Typically, it may in@utie following:

Block ID;

Links to other blocks in the file:

— next/previous block in the block order in the file;
— next/previous block that has space avaialble for new regord
— next/previous block in an special indexing order;

Information about the relation, relational schema/poitdehe schema.

General information about records in the block: record,g@@al number of
slots, number of used records, etc...

Information about availble record space on the block:

— Number of available slots/records;
— Record availability bitmap;

e Timestamps.

Maintenance of Data Stored on Disk

Data Organization in a File

Individual records can be organized in a number of diffeveays in the database
file.

Heap File Organization. Heap File denotes a record organization method where
records are stored on disk pages on first-come — first-sersis,bia no
particular order. That is, any record can be placed anywiretie file,
subject to space availability.

Sequential File Organization. A search keys defined for the relation, and records
are stored ordered according to the search key. Note thaetreh keyeed
not be a primary key, or even a superkey of the relation beioiggd. New
records must be inserted according to their search key value

Hashing File Organization. Records are hashed on some attribute value. Each
hash value is associated with a block (sequence of blockerflow buckets
are needed) where the record is to be stored.

Record Modifications

We need to discuss three basic types of modification:

e Record Insertion
e Record Deletion

e Record Update

Insertion

Record insertion procedures are different for differemt difganizations.

Insertion into a Heap File

To insert records into a heap file, it is convenient to keepoailfte-)linked list of

all heap file pages with available space. The pointer to teedage of the list can
be stored on thbeader pageThe pointers to next/previous page on the list can be
stored in theblock headers

Assuming existance of such support, insertion of a recdadarheap file can be
done as follows:

Al gorithmlnsert RecordHeap(File F, Record R)

begi n
Header Page = ReadBl ock(F, 1); /1l Retrieve the header page of the file
FreeSpacePagel d = Header Page. FreeSpacelLi st ;

Bl ock = ReadBl ock(F, FreeSpacePageld); // Retrieve the bl ock
Recor dNum = Fi ndFr eeSl ot (Bl ock) ; [l find a free sl ot
Put (R, Bl ock, RecordNum; /1 wite the contents of Rinto the
/'l avail abl e sl ot
if (No nore free space left in Bl ock)
begi n

Header Page. FreeSpacelLi st = Bl ock. FreeSpacelLi st Next ;

Next Bl ock = ReadBl ock(F, Bl ock. FreeSpaceLi st Next) ;
Next Bl ock. Fr eeSpaceli st Previ ous = 1;
Wit eBl ock(Next Bl ock, F, Bl ock. FreeSpaceLi st Next);

end

Wi teBl ock(Bl ock, F, FreeSpacePageld); // wite the data back to disk
Wit eBl ock(Header Page, F, 1);
end

Notice that this algorithm assumes tirateeSpacePagel dis not NULL. If it
is NULL, then a new page needs to be created, and the recoeds t@be put on
it.

Finding a free slot on the disk page

There is a number of ways by which a free slot can be found odigkepage. All
the computations occur in main memory and do not have I/G@sstociated with

them.

1. Direct Scan. Each record containstambstone a byte indicating whether
it is active or deleted. The disk page is scanned until therBord with the
tombstoneset to“deleted” is found.

2. Bitmap. Record header contains a bitmap, specifying which of therdsc
on the page are available. Instead of the entire disk pagebitmap is
scanned until the first available slot is discovered. Aftex tecord is in-
serted, the bitmap must be updated.

Insertion into a Sequential File.

When data is inserted into a sequential file, the followingtie observed:

e The record needs to be inserted according to the value oéyts k

e The file needs to be scanned (or an outside index needs to detadind
the disk block where there record must be inserted.

¢ Ifthere is no empty slot at the location where the record s¢ethe inserted,
record slidingmust be used to shift all subsequent records on the page (as-
suming there is space available). This operation is as sibye copyso it
can be performed fast.

¢ If there is not space on the page, two possibilities can beidered:

— Record sliding to next page. If the next disk block has enough space,
we can do record sliding and put some overflow records on tke ne
page, using record sliding there as well.

— Overflow page. Alternatively, a new disk block can be allocated. The
disk block is inserted between the current block and the biexdk in
thesearch keyrder. The contents of the current block are split roughly
evenly between the old block and the new block, after whiehriéw
record is inserted in its designated location (which caniteeon the
old page, or on the new one).

Insertion into a Hashed File.

Insertion into ehashed filgproceeds in two steps.

Step 1: The hash key of the record being inserted is computed, ardisk@age(s)
for the hash bucket is/are identified.

Step 2: An empty slot is found on one of the pages of the hash buckeb(if a
new page is added to the hash bucket), and the record isadsetb that
slot. The procedure is similar to the one used fboeap file

Deletion

Unlike insertion, methodology of record deletion does repehd on the type of
file used to store the relational table.

Some traditional approaches to deletion are:

Deletion with slide: The deleted record creates a “gap” on a disk page. To cover
this gap, the records following the gap on the disk page afeedheft, cov-
ering the gap, and moving the empty slot to the end of the page.

Advantages: Free space is always located only at the end of the disk page.
One pointer in the block header (or simply a count of occuplets for fixed-
length records) is sufficient to keep track of free spaceiwitie block.

Disadvantages: The deleted record gets immediately overwritten. This re-
moves the possibility of an easy “undo” action.Additiogathis complicates
handling dangling pointers to the deleted record (the posnivill now point

at a completely different “live” record).

Deletion without slide: The slot of the deleted record is declared available, and
the record itself is marked as deleted (by activating thebiione flag, for

9

example), but the actual space occupied by the record s$aigs &he record
can be later overwrritten, when a new record is insertedersttme space.

Advantages: Simplicity. This method requires little extra actions, sdor
changing the status of the slot to “available”.

Disadvantages: Gaps in the disk page. This means that more space or
more complicated organization is needed to keep track efgpace on the
page. Possible solutions include a bitmap in the disk headerlinked list

of all available slots: the pointer to the first availablet &ostored in the disk
header, while all subsequent pointers are stored in thedetbemsleves.

Deletion without giving up space: The record is marked as deleted, but the space
is not freed. No new record can be stored in this space untibf@mbB
reconstruction/reconciliation occurs.

Advantages: Ensures proper handling of all “dangling pointers”.

Disadvantages: The relation grows in size with every insertion. Deletions
do not decrease the space alotted for the insertion.

Additionally, deletions may lead to removal of disk pagesrirthe file. There is
a number of approaches here.

e “Lazy evaluation.” The disk page is removed only when it contains no live
records on it. Disk pages are never merged.

e “Eager evaluation.” Each time a deletion occurs, the system checks whether
current disk page can be merged with one of its neighbordelnswer is
yes, such merger is performed. The minimal criterion forgeers the abil-
ity to fit all records into the free space available in the twegghboring pages.
Other, stricter criteria (e.g., requiring at least a few gngbots available in
the resulting blocks) are also possible.

Update

For fixed-length recordecord updateslo not change the storage. The basic algo-
rithm is the same: the block with the desired record is latate disk (via scan,
index structure or other means), the disk page is retriethesl record is found,
update it performed, and the block is flushed back to disk.

10

