
. .
CSC 560 Advanced DBMS Architectures Alexander Dekhtyar
. .

Distributed Computations: MapReduce

MapReduce

MapReduce[2] is a two-step approach to distributing large computations over
multiple servers, in which, on first step (Map), transformation of data occurs,
and on second step (Reduce) data is combined to obtain the final answer.

Map.

Map is defined as a function:

Map : K × V −→ K ′
× V ′

Here,

• Keys: K and K are universes of keys, unique identifiers of the data
being processed;

• Values: V and V ′ are universes of values — the data itself.

A more exact signature of a single execution of Map is

Map : (K → V ) −→ (K ′
→ V ′)

Map is a transformation function. It takes as input a dataset identified
by keys from set V , and performs a transformation operation, by extracting
from each tuple (k, v), the new key value v′ from domain V ′, and the new
data value k′.

Examples. Here are some examples of Map.

1



Word count. Input: (docID, Text) pairs, where docID is a document id,
and Text is the text of the document.

The Map function works as follows:

map (String docId, String Text):

for each w in Text // for each word in text document

emit(w, "1");

end for

end

Map transforms a collection of documents into a stream of (w, ”1”) pairs,
where the new keyspace is the list of words found in the entire document
collection.

Aggregation. Suppose our data is tuples of a form (EmployeeId,Department, Salary)
and our goal is to compute the total salary for each department.

The data is mapped as follows: EmployeeId isKey, a pair (Department, Salary)
is V alue. The Map function performs the equivalent of GROUP BY clause in
the

SELECT Department, SUM(Salary)

FROM Employees

GROUP BY Department;

map (String Key, String Value):

emit (Value.Department, Value.Salary);

end

Reduce

Reduce is the aggregation component of the MapReduce framework. It’s
functional signature is:

Reduce : (K ′
→ (V ′)∗) −→ (V ′)∗

That is, given a mapping between keys from domain K ′ and lists of values
from domain V ′, Reduce computes a list of values from the same domain V ′.

In many applications, Reduce actually comuptes a single value:

Reduce : (K ′
→ (V ′)∗) −→ V ′

Examples.

Word count. Input: (word, List) pairs, where word is a word in the
document corpus, and List is a collection of ”1” strings emitted by the Map
function above.

The Reduce function works as follows:

reduce (String word, List<String> Counts):

count := 0;

2



for each l in Counts // for discovered occurrence of the word

count := count+1;

end for

emit(toString(count));

end

Here is an alternative, functional way to describe Reduce:

reduce(w, []) --> toString(0);

reduce(w, [Head|Tail]) --> toString(toInt(reduce(w, Tail)) + 1);

Aggregation. Recall that we want to compute the result of the query:

SELECT Department, SUM(Salary)

FROM Employees

GROUP BY Department;

Map groups salary information by department, so the input to the Reduce
function is (Department, SalaryList), where SalaryList contains salary
numbers for each employee of the department.

The Reduce function for this example is similar to the one above:

reduce(Department, []) --> toString(0);

reduce(w, [Head|Tail]) --> toString(toInt(reduce(w, Tail)) + toInt(Head));

MapReduce Implementation

Hardware: large cluster of commodity PCs, connected with switched Eth-
ernet [2, 1]. Properties:

• local storage

• node failures are common

• distributed file system

MapReduce run parameters. MapReduce requires some setup param-
eters:

• number of splits (M). The number of chunks into which the input
dataset is partitioned for the Map stage.

• number of intermediate key partitions (R). The number of chunks
into which the intermediate key space is partitioned in Reduce.

• partitioning function h(). The (hash) function used to partition
intermediate keys into R partitions.

Overall organization.

• multiple machines.

• one master server (process): controls MapReduce flow, assigns tasks
to other machines.

• multiple worker nodes: accept tasks from the master, perform them.

3



Map overview.

1. Worker selection. Master selects M workers, assigns to each a Map
task with a given split Di of the data D = D1 ∪ . . . DM .

2. Worker operation. Worker wi operates as follows:

(a) processes contents of split Di.

(b) Runs Map on each (key, value) pair, produces (iKey, iValue) pair.

(c) Buffers (iKey, iValue) pairs in main memory.

(d) When buffer is filled, stores (iKey, iValue) pairs to disk.

(e) When storing (iKey, iValue) pairs to disk, the partitioning func-
tion h(iKey) is run to determine the partition of each pair. All
data produced is split into R partitions.

(f) Reports to master the location (in the distributed file system) of
the created partitions.

Reduce overview.

1. Worker selection. When master is notified by Map workers that
data is ready for Reduce operations, it selects R workers for Reduce.
Each worker wrj is assigned partition Rj of the intermediate data.

2. Worker operation. Worker wrj operates as follows.

(a) Master notifies Reduce worker wrj of the data available from Map
worker wi.

(b) wrj accesses the partition j of intermediate data from wi (parti-
tion Rij).

(c) wrj sorts Rij on iKey values. This effectively turns a list of (iKey,
iValue) pairs, into a list of (iKey, (iValue1,. . . ,iValueN)) pairs.

(d) For each intermediate key value iKey, the pair (iKey, (iValue1,. . . ,iValueN))
is passed to Reduce function.

(e) The results of running Reduce on Rij are combined with the
results obtained from running it on data obtained from other
Map workers.

(f) When all Map processes stop, wrj finishes Reduce processing and
passes the location of the output to the master.

3. Final result assembly. The master assembles the output from the
information passed to it by workers wr1, . . . wrR.

References

[1] L. Barroso, J. Dean, U. Hölzle. Web Search for a Planet: the Google
Cluster Architecture. IEEE Micro, 23(2), pp: 22–28, April 2003.

[2] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters, Proceedings, Sixth Symposium on Operating System
Design and Implementation (OSDI’04), San Francisco, CA, December
2004.

4


