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Introduction to Machine Learning.
Part 1: Data

Machine L earning Problems

Machine Learning Problem Description. The most general description of Ma-
chine Learning is something like this:

Given a number of observations, predict what other obsensivould
look like.

Machine Learning problems can be classified into

e Regression problems
¢ Classification problems
e Clustering problems

e Recommendation problems

depending on the shape of the observations, and on the foich te prediction
is to take.

Before proceeding with more detailed discussion of difietgpes of machine
learning problems, we fisrt must examine the notiooldervations

Data for Machine Learning: Objects, Features, Targets

In most cases, data for machine learning problems is a tiolteof object descrip-
tions where eactobjectis described as eollection of features



Features. A featureis an individualmeasurable property of an object or phe-
nomenon that is being observed féaturehas the following properties:

e Name. An unique identifier that distinguishes the feature fromadher
features considered as part of the same machine learnibtgpro

e Domain. A set of values the feature can take (i.e., the set of possilele-
surements that can be made of the feature). Feature rangd® damite or
infinite.

Types of features. Depending on the specific range of feature values, features
can be classified into the following categories:

1. Numeric. Numeric features have domains that are infinite or finite (isui
ally rather large) sets of numbers.

2. Categorical. Categorical features are features with domains that are not
numeric. Among categorical features, we identify

(&) Nominal features. These are features whose possible values admit no
order.

(b) Ordinal features. These features have possible values that can be
meaningfully ordered, and thus, can be represented as msfibe. ., N}
whereN is the size of the domain of the feature.

Example. Temperature of a hospital patient patient measured in degrees Celcius
is anumeric featuravhose domain is the rangg0.0, 45.0.

The patient'snative language is acategorical nominal featurdis domain may
be rather large (total number of languages in the world iarzt&®900), by the pos-
sible values of this feature, e.gEnglish”, "Spanish”, "Mandarin”, "Russian”,
etc. do not have an ascribed order.

The patient'devel of pain is acategorical ordinal feature Its domain may be
{no, slight, moderate, severe}. There is a natural order that can be imposed on
these valuesho < slight < moderate < severe, which makes this featurerdi-
nal. The domain can be represented{as2, 3,4} (or {0, 1,2, 3}) with numbers
retaining their property of order.

Synonyms. We use the termiature, attribute, andvariable (or independent
variable) interchangebly.

Observations. In statistics an observation is a measured value, at a particular
moment of time, of a specific feature.

In this class, we use the terabservation in a more general way to refer to a
collection of measured values of a particular set of featutetdescribe a specific
object or phenomenon



Formalizing. A given machine learning problem describes a set of objects o
a set of phenomena by establishinget of featuresd = {A;,..., A, } whose
values combined producecampletgfrom the perspective of the specific machine
learning problem) description of a single object/singlemimenon. The values
for each featured;,i = 1...n come from the seD; = dom(4;).

A vectorx = (z1,...,x,) Of values, wherdVi = 1...n)(x; € dom(4;))
is called adata point. Often, without loss of generality, we refer to data points
as objects phenomenaentities points records tuples feature-vectorsor use a
domain-specific name to identify them.

Example. Consider a collection of featuréslame, Language, Temperature, PainLevel }
representing the name of a hospital patient, their nativguage, their temperature
at admission time, and their self-reported pain level.

A description of a signle patient may be a vector of values
x = ("Mary Smith”,”English”, 38.2,” moderate”).
We can refer tax in a number of ways:

e vector of feature valugseature-vectaror simplyvector

e data point

e observation

e object(although in this case it is a somewhat awkwards term)
e recordor tuple

e patient record(this is a domain-specific term that carries knowledge of the
semantics of the data)

e patient
Dataset. Let A = {4;,...,A,} be a set of features. Le{ = {x1,...,Xm},

where
(VZ =1.. .m)xi = (:L‘Z‘l,. .. ,LUm),

and X is called acollection of datapointsor adataset

Algebraic View of Datasets

Dataset asa matrix. A datasetX = {x1,...,xmxm} Ccan be viewed as matrix
X constructed as follows:

e Therowsof X are vectorx, ... Xm.

e The columnsof X are individual featuresA,, ..., A, with each column
containing the values of a single feature from all data goafithe dataset.



DatasetX can be visualized as a matrix as follows:

Al Ay ... A,

X1 |11 X12 ... Tin

X = X2 | T21 T22 ... X2pn
Xm | Tml Tm2 --- Tmn

Size of a dataset. Thesize of a datasetX = {xi,...xy}, denoted X| is the
number of data points in it, i.e.,
| X|=m
Thedimensionality of the datase’, denotediim (X) is the length of the vec-
tors in it. If
Xij = (:Cib o xin)>
then
dim(X) = n.

Numericvector-spaces. LetA = {A4;,...,A,}andletVi € 1...n)dom(A;) C
R. In this case, given a datas&t = {x1,...,xn} Of points in the feature-space
A, we can write for each data poirf that

Xi = (:L‘il, ... ,l‘m) S Rn,
i.e.,x; is a point inn-dimensional real space.

Alternatively, we can viewk; as ann-dimensional vector (vectors in real space
are considered to be columns):

€] e €n

1 0 0
=0 1 0

0 O 1

be a matrix of unit vectors
e; = (0,0,...1;,0,...,0)T.

The vectorse, ... e, are said to form thetandard basi®f R".
Vectorx; can be represented as a linear combinatiosy of. . , e,, as

n
Xj = T;1€1 + Tjp€2 + ... + Tin€n = E Tij€j.
Jj=1



Morenotation. From the above, we can denote/represent the datasef{xy,...,xn}
as follows:

Tl Tz ... Tl —x17— o |
T
21 X922 I ) —X2  —
X = " = . = Ay A Ay,
: . |
Iml Tm2 -+ Tmn —XmT—

Data Point M anipulations

Let X = {x1,...,xm} C R" be a dataset of numeric data points, andklet X
andy € X be two data points fronX:

x=(x1...,2,)7"
y= )"

We recall a number of important operations on individuadimensional vec-
tors, and pairs of such vectors. This operatiptas/ an important role in machine
learning methodology.

Dot product. The dot product ok andy, denotedx - y is defined as

N

Y2
x-y:xTy:(xl,...,:vn)x : =

Yn
n
=T1Y1 +22Y2 + ... TpYn = Zl’zyz
i=1

Orthogonality. Two vectorsx andy are calledorthogonal iff

x-y=0.
Vector norms. The Li-normof a vectorx is defined as
n
el = [z1] + ] + ... + |za] = Y |-
=1

The Lo-norm of vectorx, also called théeucledean nornor thelengthof x is
defined as

Icllz = [Ixl| = VXT-x = \/a? + a3 +...a% =

In general, arL,-normof a vectorx is defined as

1

1 n B
Ixllp = (2} + 2h + ...+ ab)r = (pr> .
i=1



Distance. TheEucledean distancketween two vectors andy is defined as

5, y) =z —yl = /(x —y)T(x —y =

Similarly, the L,,-norm distance betweenandy is defined as

6P(X7Y) =[x — Y||p
In particular, thel;-norm distance betweenandy, also known as thanhat-
tan distanceas

n
Manhattan(x,y) = |x=yll1 = |z1=y1|[+|r2a—yol+. . Hlan—yn| = D _ l2i—pil.
=1

Angle. Inmany settings, itis helpful to compare tthieectionsof then-dimensional

vectorsx andy from the dataseX . In such cases, we use thesine similarity
score, which is the cosine of the angle between the two \&ctbiis defined as

follows:
T
cos(x,y) = =Y _ <1> <L> _
(pSliingl [} vl

D1 Tl

\/Z?:l 37? \/Z?:l 3/12

Cauchy-Scwartz inequality. The Cauchy-Schwarts inequalifpr the Lo-norm
and the dot product of two vectors state that

-y < [Ix[llyll

Therefore,
-1 <cos(x,y) <1

Mean point of a dataset. Given a dataseX = {x1,...,xm}, themean point
of the dataset or themean is defined as:

mean(X) = ux = Z X;

Total Variance. The total variance of the datasetX is the average squared
distance from a point irX to the mean point ok :

1 m
var(X) = p. Z;(S Xi, [1X) Z s — px|1?
1=
We can simplify the computation of variance as follows:
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1 m 1 m n
var(X) = — D i — px|® = - D (wiy—uxg)’ =
=1

i=1 j=1

1 & 1 [ & 1

— > (ill*—2x" pxHlpx | = — (Z acil* = 2mpux” (g ZXi> +m\luxll2> =
=1 =1 =1

1 m
m (Z Ixil* = 2mpx " px + mIIMxH2> =

i=1
1 m
=— (ZIIXiII2> — lpx|®
m ;
=1

Orthogonal Projection. Consider two vectors (data points)y € X.

An orthogonal decomposition of x in the direction ofy is a pair of vectorp,
r, such that the following holds:

X=p-+r
plr=0
rly =0

That is,x can be decomposed as the sum of twthogonal vectorsp andr,
one of which ¢) is, in turn,orthogonal toy (which forces the other vectap, to be
co-aligned, orcolinear with y)

Vector p is theorthogonal projection of x ontoy. Vectorr = x — p is the
perpendicular distance betweenx andy, and is colinear with theormal vector
toy.

Because is colinear withy, we have

p=7a,

and

r=x-—cy.

Because’r = 0, we get

pr=(cy) (x—cy)=cy’x -’y y =0

Because: # 0, we must therefore have

y'x—eyly =0,
which yields

yTX y-x
C = —

yly — yll?




Therefore, the orthogonal projectionxfontoy can be computed as

Xy
p= X.
Iyl?

Another form of this expression is

p = (|Ix]|* cos(x,y)) x.

More Linear Algebra Concepts

Linear combinations. Let X = {xi,...,xy} be a dataset of points; € R".
Given a set of scalar values, . . ., ¢,,, the vector

C1X1 + X2 + ... + CnXm

is called dinear combinatiorof vectorsxy, . .., xm.

Spanning set. The set of all possible linear combinations

m
vV = E C; Xj
=1

of vectorsxy, . . ., xm, denotetspan(xy, . . ., Xm ) Or span(X) is called thespan-
ning set of x1,...,xm.

Row and Column Space. Given the dataseX represented as an x n matrix:

X: Xo ... X,

X1 |11 T12 ... Tin

X = X2 | X211 X22 ... X2
Xm | Tml Tm2 --- Tmn

the column span of X, denoted-ol(X) is defined as the
col(X) = span(Xy,..., X,),
and therow span of X, denotedrow(X) is defined as the

row(X) = span(xy,...,Xm)

We can see thabl(X) C R™ androw(X) C R™.

Linear dependence. A set of vectorsvy, ..., vy arelinearly dependentff at
least one vector can be represented as a linear combindtmhers, i.e., if there
are scalarsy, . . ., ¢, such that at least ong = 0, and

61V1+...Cka:0

Vectorsvy, . .., vi arelinearly independenbdtherwise.
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Rank. LetS C R? A basis seffor S is a set of linearly independent vectors
B ={v1,..., vy} such thatspan(vy,...,vk) = S.

If all vectors inB are pairwise orthogonal,i.e(Yi,j € 1...k,i # j)(vi-v; =
0), B is called arorthogonal basiof S.

If for each vectorv; € B, ||lv;|| = 1, and B is an orthogonal basis, theR, is
calledan orthonormal basis

Thestandard basigor R? is the basis consisting of vectors

eq = (0,0,...,1)T

Theorem. Every basis of a s&f of vectorshas the same number of vectors

The number of vectors in a basis 6fis called thedimension ofS, denoted
dim(S).
Theorem. Given a matrix

ail a12 Aln

a1 a22 A2n
A= ,

aml am2 ... Qmn

dim(col(A)) = dim(row(A)).

This value is called theank of the matrixA, denotedrank(A).



