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Introduction to Machine Learning.
Part 1: Data

Machine Learning Problems

Machine Learning Problem Description. The most general description of Ma-
chine Learning is something like this:

Given a number of observations, predict what other observations would
look like.

Machine Learning problems can be classified into

• Regression problems

• Classification problems

• Clustering problems

• Recommendation problems

depending on the shape of the observations, and on the form which the prediction
is to take.

Before proceeding with more detailed discussion of different types of machine
learning problems, we fisrt must examine the notion ofobservations.

Data for Machine Learning: Objects, Features, Targets

In most cases, data for machine learning problems is a collection of object descrip-
tions, where eachobjectis described as acollection of features.
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Features. A featureis an individualmeasurable property of an object or phe-
nomenon that is being observed. Afeaturehas the following properties:

• Name. An unique identifier that distinguishes the feature from allother
features considered as part of the same machine learning problem.

• Domain. A set of values the feature can take (i.e., the set of possiblemea-
surements that can be made of the feature). Feature ranges can be finite or
infinite.

Types of features. Depending on the specific range of feature values, features
can be classified into the following categories:

1. Numeric. Numeric features have domains that are infinite or finite (butusu-
ally rather large) sets of numbers.

2. Categorical. Categorical features are features with domains that are not
numeric. Among categorical features, we identify

(a) Nominal features. These are features whose possible values admit no
order.

(b) Ordinal features. These features have possible values that can be
meaningfully ordered, and thus, can be represented as numbers{1, . . . , N}
whereN is the size of the domain of the feature.

Example. Temperature of a hospital patient patient measured in degrees Celcius
is anumeric featurewhose domain is the range[30.0, 45.0].

The patient’snative language is acategorical nominal feature.Its domain may
be rather large (total number of languages in the world is around 6900), by the pos-
sible values of this feature, e.g.,”English”, ”Spanish”, ”Mandarin”, ”Russian”,
etc. do not have an ascribed order.

The patient’slevel of pain is acategorical ordinal feature. Its domain may be
{no, slight,moderate, severe}. There is a natural order that can be imposed on
these values:no < slight < moderate < severe, which makes this featureordi-
nal. The domain can be represented as{1, 2, 3, 4} (or {0, 1, 2, 3}) with numbers
retaining their property of order.

Synonyms. We use the termsfeature, attribute, andvariable (or independent
variable) interchangebly.

Observations. In statistics, an observation is a measured value, at a particular
moment of time, of a specific feature.

In this class, we use the termobservation in a more general way to refer to a
collection of measured values of a particular set of features, thatdescribe a specific
object or phenomenon.
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Formalizing. A given machine learning problem describes a set of objects or
a set of phenomena by establishing aset of featuresA = {A1, . . . , An} whose
values combined produce acomplete(from the perspective of the specific machine
learning problem) description of a single object/single phenomenon. The values
for each featureAi, i = 1 . . . n come from the setDi = dom(Ai).

A vector x = (x1, . . . , xn) of values, where(∀i = 1 . . . n)(xi ∈ dom(Ai))
is called adata point. Often, without loss of generality, we refer to data points
as objects, phenomena, entities, points, records, tuples, feature-vectorsor use a
domain-specific name to identify them.

Example. Consider a collection of features{Name,Language,Temperature,PainLevel}
representing the name of a hospital patient, their native language, their temperature
at admission time, and their self-reported pain level.

A description of a signle patient may be a vector of values

x = (”Mary Smith”, ”English”, 38.2, ”moderate”).

We can refer tox in a number of ways:

• vector of feature values, feature-vector, or simplyvector

• data point

• observation

• object(although in this case it is a somewhat awkwards term)

• recordor tuple

• patient record(this is a domain-specific term that carries knowledge of the
semantics of the data)

• patient

Dataset. Let A = {A1, . . . , An} be a set of features. LetX = {x1, . . . ,xm},
where

(∀i = 1 . . . m)xi = (xi1, . . . , xin),

andX is called acollection of datapoints, or adataset.

Algebraic View of Datasets

Dataset as a matrix. A datasetX = {x1, . . . ,xm} can be viewed as amatrix
X constructed as follows:

• Therowsof X are vectorsx1, . . . xm.

• The columnsof X are individual featuresA1, . . . , An, with each column
containing the values of a single feature from all data points of the dataset.
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DatasetX can be visualized as a matrix as follows:

X =















A1 A2 . . . An

x1 x11 x12 . . . x1n

x2 x21 x22 . . . x2n

...
...

...
. . .

...
xm xm1 xm2 . . . xmn















Size of a dataset. The size of a datasetX = {x1, . . . xn}, denoted|X| is the
number of data points in it, i.e.,

|X| = m

Thedimensionality of the datasetX, denoteddim(X) is the length of the vec-
tors in it. If

xi = (xi1, . . . xin),

then
dim(X) = n.

Numeric vector-spaces. LetA = {A1, . . . , An} and let(∀i ∈ 1 . . . n)dom(Ai) ⊆
R. In this case, given a datasetX = {x1, . . . ,xn} of points in the feature-space
A, we can write for each data pointxi that

xi = (xi1, . . . , xin) ∈ R
n,

i.e.,xi is a point inn-dimensional real space.

Alternatively, we can viewxi as ann-dimensional vector (vectors in real space
are considered to be columns):

xi =











xi1

xi2

...
xin











= (xi1, . . . , xin)T .

Linear Representation of vectors. Let

I =















e1 e2 . . . en

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1















be a matrix of unit vectors

ei = (0, 0, . . . 1i, 0, . . . , 0)
T .

The vectorse1, . . . en are said to form thestandard basisof R
n.

Vectorxi can be represented as a linear combination ofe1, . . . , en as

xi = xi1e1 + xi2e2 + . . . + xinen =
n
∑

j=1

xijej.
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More notation. From the above, we can denote/represent the datasetX = {x1, . . . ,xn}
as follows:

X =











x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

.. .
...

xm1 xm2 . . . xmn











=











−x1
T−

−x2
T−

...
−xm

T−











=





| | |
A1 A2 . . . An

| | |





Data Point Manipulations

Let X = {x1, . . . ,xm} ⊆ R
n be a dataset of numeric data points, and letx ∈ X

andy ∈ X be two data points fromX:

x = (x1 . . . , xn)T

y = (y1 . . . , yn)T

We recall a number of important operations on individualn-dimensional vec-
tors, and pairs of such vectors. This operationsplay an important role in machine
learning methodology.

Dot product. The dot product ofx andy, denotedx · y is defined as

x · y = x
T
y = (x1, . . . , xn) ×











y1

y2

...
yn











=

= x1y1 + x2y2 + . . . xnyn =
n
∑

i=1

xiyi.

Orthogonality. Two vectorsx andy are calledorthogonal iff

x · y = 0.

Vector norms. TheL1-normof a vectorx is defined as

‖x‖1 = |x1| + |x2| + . . . + |xn| =

n
∑

i=1

|xi|.

TheL2-norm of vectorx, also called theEucledean normor the lengthof x is
defined as

‖x‖2 = ‖x‖ =
√

xT · x =
√

x2

1
+ x2

2
+ . . . x2

n =

√

√

√

√

n
∑

i=1

x2

i .

In general, anLp-normof a vectorx is defined as

‖x‖p = (xp
1
+ x

p
2
+ . . . + xp

n)
1

p =

(

n
∑

i=1

x
p
i

)
1

p

.
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Distance. TheEucledean distancebetween two vectorsx andy is defined as

δ(x,y) = ‖x − y‖ =
√

(x− y)T (x − y =

√

√

√

√

n
∑

i=1

(xi − yi)
2.

Similarly, theLp-norm distance betweenx andy is defined as

δp(x,y) = ‖x − y‖p

In particular, theL1-norm distance betweenx andy, also known as theManhat-
tan distanceis

Manhattan(x,y) = ‖x−y‖1 = |x1−y1|+|x2−y2|+. . .+|xn−yn| =
n
∑

i=1

|xi−yi|.

Angle. In many settings, it is helpful to compare thedirectionsof then-dimensional
vectorsx andy from the datasetX. In such cases, we use thecosine similarity
score, which is the cosine of the angle between the two vectors. It is defined as
follows:

cos(x,y) =
x · y

‖x‖‖y‖ =

(

x

‖x‖

)T (
y

‖y‖

)

=

=

∑n
i=1

xiyi
√

∑n
i=1

x2

i

√

∑n
i=1

y2

i

.

Cauchy-Scwartz inequality. TheCauchy-Schwarts inequalityfor the L2-norm
and the dot product of two vectors state that

|x · y| ≤ ‖x‖‖y‖

Therefore,
−1 ≤ cos(x,y) ≤ 1

Mean point of a dataset. Given a datasetX = {x1, . . . ,xm}, themean point
of the dataset or themean is defined as:

mean(X) = µX =
1

m

m
∑

i=1

xi

Total Variance. The total variance of the datasetX is the average squared
distance from a point inX to the mean point ofX:

var(X) =
1

m

m
∑

i=1

δ(xi, µX) =
1

m

m
∑

i=1

‖xi − µX‖2

We can simplify the computation of variance as follows:
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var(X) =
1

m

m
∑

i=1

‖xi − µX‖2 =
1

m

m
∑

i=1

n
∑

j=1

(xij − µXj)
2 =

1

m

m
∑

i=1

(‖xi‖2−2xi
T µX+‖µX‖2 =

1

m

(

m
∑

i=1

‖xi‖2 − 2mµX
T

(

1

m

m
∑

i=1

xi

)

+ m‖µX‖2

)

=

1

m

(

m
∑

i=1

‖xi‖2 − 2mµX
T µX + m‖µX‖2

)

=

=
1

m

(

m
∑

i=1

‖xi‖2

)

− ‖µX‖2

Orthogonal Projection. Consider two vectors (data points)x,y ∈ X.

An orthogonal decomposition of x in the direction ofy is a pair of vectorsp,
r, such that the following holds:

x = p + r

p
T
r = 0

r
T
y = 0

That is,x can be decomposed as the sum of twoorthogonal vectors, p andr,
one of which (r) is, in turn,orthogonal toy (which forces the other vector,p to be
co-aligned, orcolinearwith y)

Vector p is theorthogonal projection of x onto y. Vectorr = x − p is the
perpendicular distance betweenx andy, and is colinear with thenormal vector
to y.

Becausep is colinear withy, we have

p = cy,

and

r = x− cy.

BecausepT
r = 0, we get

p
T
r = (cy)T (x− cy) = cyT

x− c2
y

T
y = 0

Becausec 6= 0, we must therefore have

y
T
x− cyT

y = 0,

which yields

c =
y

T
x

yTy
=

y · x
‖y‖2
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Therefore, the orthogonal projection ofx ontoy can be computed as

p =
x · y
‖y‖2

x.

Another form of this expression is

p =
(

‖x‖2 cos(x,y)
)

x.

More Linear Algebra Concepts

Linear combinations. Let X = {x1, . . . ,xm} be a dataset of pointsxi ∈ R
n.

Given a set of scalar valuesc1, . . . , cm, the vector

c1x1 + c2x2 + . . . + cmxm

is called alinear combinationof vectorsx1, . . . ,xm.

Spanning set. The set of all possible linear combinations

v =
m
∑

i=1

cixi

of vectorsx1, . . . ,xm, denotedspan(x1, . . . ,xm) or span(X) is called thespan-
ning set of x1, . . . ,xm.

Row and Column Space. Given the datasetX represented as anm × n matrix:

X =















X1 X2 . . . Xn

x1 x11 x12 . . . x1n

x2 x21 x22 . . . x2n

...
...

...
. . .

...
xm xm1 xm2 . . . xmn















thecolumn span of X, denotedcol(X) is defined as the

col(X) = span(X1, . . . ,Xn),

and therow span of X, denotedrow(X) is defined as the

row(X) = span(x1, . . . ,xm)

We can see thatcol(X) ⊆ R
m androw(X) ⊆ R

n.

Linear dependence. A set of vectorsv1, . . . ,vk are linearly dependentiff at
least one vector can be represented as a linear combination of others, i.e., if there
are scalarsc1, . . . , ck such that at least oneci 6= 0, and

c1v1 + . . . ckvk = 0

Vectorsv1, . . . ,vk arelinearly independentotherwise.
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Rank. Let S ⊆ R
d. A basis setfor S is a set of linearly independent vectors

B = {v1, . . . ,vk} such thatspan(v1, . . . ,vk) = S.

If all vectors inB are pairwise orthogonal,i.e.,(∀i, j ∈ 1 . . . k, i 6= j)(vi · vj =
0), B is called anorthogonal basisof S.

If for each vectorvi ∈ B, ‖vi‖ = 1, and B is an orthogonal basis, then,B is
calledan orthonormal basis.

Thestandard basisfor R
d is the basis consisting of vectors

e1 = (1, 0, . . . , 0)T

e2 = (0, 1, . . . , 0)T

. . .

ed = (0, 0, . . . , 1)T

Theorem. Every basis of a setS of vectorshas the same number of vectors.

The number of vectors in a basis ofS is called thedimension ofS, denoted
dim(S).

Theorem. Given a matrix

A =











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. ..
...

am1 am2 . . . amn











,

dim(col(A)) = dim(row(A)).

This value is called therank of the matrixA, denotedrank(A).
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