Machine Learning: Classification/Supervised Learning

Machine Learning: Regression Case.

Dataset. Consider a collection of features $X = \{X_1, \ldots, X_n\}$, Consider also an additional feature Y, such that $\text{dom}(Y) = \{c_1, \ldots, c_k\}$. We call Y the class variable.

Let $D = \{x_1', \ldots, x'_m\}$ be a collection of data points, such that $(\forall j \in 1 \ldots m)(x'_j \in \text{dom}(X \times \text{dom}(Y)))$. We write D as

$$
D = \begin{pmatrix}
X_1 & X_2 & \ldots & X_n \\
x_{11} & x_{12} & \ldots & x_{1n} & y_1 \\
x_{11} & x_{12} & \ldots & x_{1n} & y_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{11} & x_{12} & \ldots & x_{1n} & y_m
\end{pmatrix}
$$

We also write $x_i = (x_{i1}, \ldots, x_{in})$.

Machine Learning Question. We treat X as the independent or observed variables and Y as the dependent or target variable.

Our goal can be expressed as such:

Given the dataset D of data points, find a relationship between the vectors x_i of observed data and the values y_i of the dependent variable.

Classification. Representing a relationship between a collection of numeric and categorical independent variables and a dependent categorical variable is known as the classification problem.

Supervised learning because D, called training set contains class labels. Thus we can "supervise" predictions of our classifier.
Classification is usually performed in two steps:

1. **Step 1. Model fit.** On this step, the incoming training set is analyzed and a classification function is built to fit the training set.

2. **Step 2. Classification (Prediction).** This is the operation of actually producing a prediction $\text{class}(\bar{x})$ upon receiving a data point \bar{x} as input. This step uses the function built during the Model fit step.

Classification Methodology

Logistic Regression. Extension of regression to the case of binary (categorical) target variable.

Perceptron. A simple linear or non-linear function that bisects the n-dimensional feature space.

Neural Netowoks. Graphical models that construct a ”separation function” based on the training set data by ”chaining” multiple perceptrons.

Naïve Bayes. Estimation of probability that a record belongs to each class.

Support Vector Machines (SVMs). Linear models for two-class classifiers.

Association Rules. Infer association rules with class label on the right side.

Decision Trees. Build a tree-like classifier. (key advantage: human-readable!)

Nearest Neighbor classifiers. Lazy evaluation classifiers that predict class of an input point based on its proximity to points with known category labels.

Linear Discriminant Analysis. Classification by finding a low-dimension hyper-plane (e.g., a line) projection of all points onto which gives the best separation.

Simple Ensemble methods. Running multiple independent classifiers and using majority/plurality prediction.

Bagging. Bagging = Bootstrap aggregation is a resampling technique used to construct many classifiers (of the same basic type) on bootstrapped versions of the training sets. The class of a given data point is predicted as majority/plurality class for all constructed individual predictors. (Random Forests is a bagging extension of Decision Trees classifiers).

Boosting. Boosting is an ensemble technique where after a classifier is built for a given training set, the misclassified data points are given higher weight in the training set, and a new classifier is built to account for that. The method constructs a sequence of predictors, each of which is trying to correct for the errors of the previous one. (Adaboost is the classical example of a boosting classifier).

Perceptron

Many classification methods are naturally defined for the case when there are only two categories in the set of category labels. Such situations are usually called binary classification.

One of the simplest binary classifiers is perceptron.
Definition. Let \(X = \{\bar{x}_1, \ldots, \bar{x}_n\} \) be a set of data points, where each point \(\bar{x}_i = (a_1, \ldots, a_d) \) is a vector of length \(d \). Let \(C = \{+1, -1\} \) is the set of category labels, and let \(Y = \{y_1, \ldots, y_n\}, y_i \in C \) be the category labels \(y_i = class(\bar{x}_i) \).

A perceptron is binary linear classifier that consists of

1. a linear function
 \[
 f(\bar{x}) = \sum_{j=1}^{d} w_j \cdot a_j
 \]
 for some vector \(w = (w_1, \ldots, w_d) \) of weights,
2. a threshold value \(\theta \), and
3. a decision procedure:
 \[
 class(\bar{x}) = \begin{cases}
 +1 & \text{if } f(\bar{x}) > \theta; \\
 -1 & \text{if } f(\bar{x}) < \theta;
 \end{cases}
 \]

Intuition. The perceptron function \(f(\bar{x}) = w \cdot \bar{x} \) defines a \(d - 1 \) dimensional hyperplane through the \(d \)-dimensional feature space. Points on the positive side of \(f \) are classified into the positive class (the +1 class). Points on the negative side of \(f \) are classified to the negative class (the −1 class).

Notes.

- For a perceptron to correctly classify the data, the data must be linearly separable. A dataset is called linearly separable if there exists a hyperplane through its feature space that separates the points in one category from the points in another category.
- If there are multiple hyperplanes that linearly separate the data, the perceptron will converge to one of them. The error function for the perceptron is essentially

\[
Error(f(\bar{x})) = \sum_{i=1}^{n} |f(\bar{x}_i) - y_i|,
\]

i.e. the number of incorrectly classified data points. Therefore \(Error(f) = 0 \) for any hyperplane \(f \) that linearly separates the dataset, and the perceptron does not differentiate between such hyperplanes.

Training Perceptron

We first present the perceptron training algorithm for \(\theta = 0 \).

1. Set \(w = (0, \ldots, 0) \).
2. Pick \(\eta > 0 \), the learning rate of the perceptron.
3. For each training example \((\bar{x}, y), \bar{x} \in X \) do:
 (a) \(y' = w \cdot \bar{x} \)
(b) if y' and y have the same sign, do nothing.
(c) if y' and y have different signs:

$$w := w + \eta \cdot y \cdot \bar{x}$$

To train the perceptron with an arbitrary value of θ:

- replace the vector $w = (w_1, \ldots, w_d)$ with the vector $w' = (w_1, \ldots, w_d, \theta)$.
- replace every vector $\bar{x} \in X$, where $x = (a_1, \ldots, a_d)$ with the vector $\bar{x}' = (a_1, \ldots, a_d, -1)$.
- Train the perceptron using the algorithm above on the weights w' and feature vectors $X' = \{\bar{x}_1', \ldots, \bar{x}_n'\}$.

Note: If you squint at it, the training process for the perceptron classifier should remind you of something. Hint: where else have you seen the learning rate parameter?

Indeed, this algorithm is a special case of gradient descent/gradient ascent.

When to stop

The training can stop if:

- All $\bar{x} \in X$ have been correctly classified (i.e., when classification error = 0).
- Failing that, perceptron training can be stopped in one of the following ways:
 - After M iterations for some number $M > n$.
 - After the following detection error:

$$Error' = \frac{1}{2} \sum_{i=1}^{n} |w \cdot \bar{x}_i \cdot (\text{sign}(w \cdot \bar{x}_i) - y_i)|$$

stops decreasing.

(Note: $Error'$ computes the sum of distances from the separating hyperplane of all points that are misclassified. We need the $\frac{1}{2}$ normalizing factor because $|\text{sign}(w \cdot \bar{x}_i) - y_i| = 2$ when the perceptron misclassifies a data point.)

References
