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Introduction to Machine Learning.
Part 1: Problems and Approaches

Machine Learning Problems

Machine Learning Problem Description. The most general description of Ma-

chine Learning is something like this:

Given a number of observations, predict what other observations would

look like.

A somewhat broader definition states simply find insight in data.

There are a number of shapes that Data Mining/Machine Learning can take. Each

”shape” or problem type is characterized by some unique circumstances/needs/questions,

but they are also interconnected. One of our key goals for the course is to under-

stand these interconnections.

Machine Learning/Data Mining problems Aggrawal outlines four categories

of Data Mining problems:

• Pattern analysis: search of interesting patterns in data

• Classification: prediction of a value of a (categorical) feature associated

with each data point

• Clustering: partitioning of objects in a dataset into groups such that objects

each group are more similar to each other than to objects in other groups.

• Outlier analysis: finding data points in a dataset that exhibit anomalous or

unusual values

In my view, this breakdown needs to be expanded and adjusted. In CSC 466

and in DATA 401 I usually give the following nomenclature of Machine Learning

problems:
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• Regression problems: prediction of a value of a numeric feature associated

with each data point

• Classification problems: prediction of a value of a categorical feature as-

sociated with each data point

• Clustering problems: partitioning of objects in a dataset into groups such

that objects each group are more similar to each other than to objects in other

groups.

• Recommendation problems: prediction of a value of a (numeric or cate-

gorical) feature in a sparse matrix.

Another important issue here is to distinguish between problems and approaches

that carry the same name. Problems are questions and challenges. Approaches

are solutions. For example:

• Outlier detection problem can be solved using classification algorithms

• Outlier detection problem can be solved using clustering algorithms

• Classifiation problem can be solved using pattern analysis algorithms

• Recommendation problem can be solved using regression algorithms

and so on.

Here is another attempt at approaching this.

Type of insight: Local or Global: What is the scope of the problem w.r.t. the

dataset?

• Local. Some ML/DM problems require local insight, i.e., analysis of a part

of the dataset. While such analysis may involve looking at the entirety of

the data available, the output of the analysis is local - i.e., it concerns only a

subset of the data. Machine Learning problems with local scope are:

– Outlier Detection: only data points that do not ”fit” the rest of the data

are of interest to us.

– Pattern Analysis: a pattern is explicitly a subset of data in which a

specific dependency/behavior is observed.

– Recommendations: in some scenarios, the problem of giving a rec-

ommendation involves a single data point and a subset of the entire

dataset. Global-scope versions of this problem also exist.

• Global. These types of analysis target the entire dataset will provide in-

sight about every single data point in it. Often, when people say ”Machine

learning” or ”data mining” they mean these kinds of problems.

– Regression: regression predicts the value of a target variable for each

point in the dataset as well as for any unseen data point.
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– Classification: classifciation predicts the class for each data point in

the dataset as well as for any unseen data point.

– Clustering: the entire dataset is partitioned, the status of each data

point (i.e., what cluster it belongs to, if any) is of interest.

– Recommendations: global scenarios involve predicting an expected

score for a specific item for all data points (users) in a dataset, and

building predictive models for unseen data.

What is the final goal of the analysis? There are multiple final goals, and the

same approaches can be used to meet different goals.

• Prediction. Given an unseen data point predict its properties. This is a com-

mon task for classification, regression and recommendation problems,

as well as outlier detection. In some contexts clustering can be viewed

from a predictive point of view as well.

• Description. Describe the insight gained in the collected data. Clustering

and pattern analysis concentrate on insight from the collected data. Some

Outlier detection scenarios are descriptive.

• Interpretation. The bread-and-butter of statistical analysis: we are inter-

ested in explanation of the reasons why the data behaves the way it does.

Classification and regression are often used for interpretation rather than

prediction, and these two uses of these approaches differ. Explanatory mod-

els can be constructed for recommendations, outlier detection and pat-

tern analysis as well.

What data is available? This addresses the classic supervised vs. unsupervised

learning split.

• Supervised Learning methods. Supervised learning relies on ground truth,

i.e., known values of the variable(s) of interest in the provided dataset (often

referred to as training data) to infer predictions or interpretations. Supervised

learning problems are

– Regression: training data has values for the numeric target variable

– Classification: training data has class assignment

– Recommendation: training data has item scores for a subset of cus-

tomers (some people may refer to such situations are ”semi-supervised

learning”)

– Outlier detection: when viewed as a classification problem, the train-

ing set contains data points labelled as outliers/anomalies.

• Unsupervised Learning methods. Unsupervised learning relies on gaining

insight in the absence of ground truth.

– Clustering: can be thought of as a classification problem when the

class variable is unknown.
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– Pattern Analysis: examples of patterns of interest are typically NOT

provided. Pattern analysis methods can be used in supervised learning

settings though.

– Outlier detection: when viewed as a clustering problem, the available

dataset may not include any outlier designations by itself.

Before proceeding with more detailed discussion of different types of machine

learning problems, we first must examine the notion of observations.

Data for Machine Learning: Objects, Features, Targets

In most cases, data for machine learning problems is a collection of object descrip-

tions, where each object is described as a collection of features.

Features. A feature is an individual measurable property of an object or phe-

nomenon that is being observed. A feature has the following properties:

• Name. An unique identifier that distinguishes the feature from all other

features considered as part of the same machine learning problem.

• Domain. A set of values the feature can take (i.e., the set of possible mea-

surements that can be made of the feature). Feature ranges can be finite or

infinite.

Types of features. Depending on the specific range of feature values, features

can be classified into the following categories:

1. Numeric. Numeric features have domains that are infinite or finite (but usu-

ally rather large) sets of numbers.

2. Categorical. Categorical features are features with domains that are not

numeric. Among categorical features, we identify

(a) Nominal features. These are features whose possible values admit no

order.

(b) Ordinal features. These features have possible values that can be

meaningfully ordered, and thus, can be represented as numbers {1, . . . , N}
where N is the size of the domain of the feature.

Example. Temperature of a hospital patient patient measured in degrees Celcius

is a numeric feature whose domain is the range [30.0, 45.0].

The patient’s native language is a categorical nominal feature. Its domain may

be rather large (total number of languages in the world is around 6900), by the pos-

sible values of this feature, e.g., ”English”, ”Spanish”, ”Mandarin”, ”Russian”,

etc. do not have an ascribed order.

The patient’s level of pain is a categorical ordinal feature. Its domain may be

{no, slight,moderate, severe}. There is a natural order that can be imposed on

4



these values: no < slight < moderate < severe, which makes this feature ordi-

nal. The domain can be represented as {1, 2, 3, 4} (or {0, 1, 2, 3}) with numbers

retaining their property of order.

Synonyms. We use the terms feature, attribute, and variable (or independent

variable) interchangebly.

Observations. In statistics, an observation is a measured value, at a particular

moment of time, of a specific feature.

In this class, we use the term observation in a more general way to refer to a

collection of measured values of a particular set of features, that describe a specific

object or phenomenon.

Formalizing. A given machine learning problem describes a set of objects or

a set of phenomena by establishing a set of features A = {A1, . . . , An} whose

values combined produce a complete (from the perspective of the specific machine

learning problem) description of a single object/single phenomenon. The values

for each feature Ai, i = 1 . . . n come from the set Di = dom(Ai).

A vector x = (x1, . . . , xn) of values, where (∀i = 1 . . . n)(xi ∈ dom(Ai))
is called a data point. Often, without loss of generality, we refer to data points

as objects, phenomena, entities, points, records, tuples, feature-vectors or use a

domain-specific name to identify them.

Example. Consider a collection of features {Name, Language,Temperature,PainLevel}
representing the name of a hospital patient, their native language, their temperature

at admission time, and their self-reported pain level.

A description of a signle patient may be a vector of values

x = (”Mary Smith”, ”English”, 38.2, ”moderate”).

We can refer to x in a number of ways:

• vector of feature values, feature-vector, or simply vector

• data point

• observation

• object (although in this case it is a somewhat awkwards term)

• record or tuple

• patient record (this is a domain-specific term that carries knowledge of the

semantics of the data)

• patient

Dataset. Let A = {A1, . . . , An} be a set of features. Let X = {x1, . . . ,xm},

where

(∀i = 1 . . . m)xi = (xi1, . . . , xin),

and

5



Dataset. Let A = {A1, . . . , An} be a set of features. Let X = {x1, . . . ,xm},

where

(∀i = 1 . . . m)xi = (xi1, . . . , xin),

and

(∀j = 1 . . . n)xij ∈ range(Aj).

X is called a collection of datapoints, or a dataset.

X is called a collection of datapoints, or a dataset.

Algebraic View of Datasets

Dataset as a matrix. A dataset X = {x1, . . . ,xm} can be viewed as a matrix

X constructed as follows:

• The rows of X are vectors x1, . . . xm.

• The columns of X are individual features A1, . . . , An, with each column

containing the values of a single feature from all data points of the dataset.

Dataset X can be visualized as a matrix as follows:

X =















A1 A2 . . . An

x1 x11 x12 . . . x1n
x2 x21 x22 . . . x2n
...

...
...

. . .
...

xm xm1 xm2 . . . xmn















Size of a dataset. The size of a dataset X = {x1, . . . xn}, denoted |X| is the

number of data points in it, i.e.,

|X| = m

The dimensionality of the dataset X, denoted dim(X) is the length of the vec-

tors in it. If

xi = (xi1, . . . xin),

then

dim(X) = n.

Numeric vector-spaces. Let A = {A1, . . . , An} and let (∀i ∈ 1 . . . n)dom(Ai) ⊆
R. In this case, given a dataset X = {x1, . . . ,xn} of points in the feature-space

A, we can write for each data point xi that

xi = (xi1, . . . , xin) ∈ R
n,

i.e., xi is a point in n-dimensional real space.
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Alternatively, we can view xi as an n-dimensional vector (vectors in real space

are considered to be columns):

xi =











xi1
xi2

...

xin











= (xi1, . . . , xin)
T .

Linear Representation of vectors. Let

I =















e1 e2 . . . en

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1















be a matrix of unit vectors

ei = (0, 0, . . . 1i, 0, . . . , 0)
T .

The vectors e1, . . . en are said to form the standard basis of Rn.

Vector xi can be represented as a linear combination of e1, . . . , en as

xi = xi1e1 + xi2e2 + . . .+ xinen =
n
∑

j=1

xijej.

More notation. From the above, we can denote/represent the dataset X = {x1, . . . ,xn}
as follows:

X =











x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...

xm1 xm2 . . . xmn











=











−x1
T−

−x2
T−

...

−xm
T−











=





| | |
A1 A2 . . . An

| | |





Data Point Manipulations

Let X = {x1, . . . ,xm} ⊆ R
n be a dataset of numeric data points, and let x ∈ X

and y ∈ X be two data points from X:

x = (x1 . . . , xn)
T

y = (y1 . . . , yn)
T

We recall a number of important operations on individual n-dimensional vec-

tors, and pairs of such vectors. This operations play an important role in machine

learning methodology.
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Dot product. The dot product of x and y, denoted x · y is defined as

x · y = x
T
y = (x1, . . . , xn)×











y1
y2
...

yn











=

= x1y1 + x2y2 + . . . xnyn =

n
∑

i=1

xiyi.

Orthogonality. Two vectors x and y are called orthogonal iff

x · y = 0.

Vector norms. The L1-norm of a vector x is defined as

‖x‖1 = |x1|+ |x2|+ . . .+ |xn| =
n
∑

i=1

|xi|.

The L2-norm of vector x, also called the Eucledean norm or the length of x is

defined as

‖x‖2 = ‖x‖ =
√
xT · x =

√

x2
1
+ x2

2
+ . . . x2n =

√

√

√

√

n
∑

i=1

x2i .

In general, an Lp-norm of a vector x is defined as

‖x‖p = (xp
1
+ x

p
2
+ . . .+ xpn)

1

p =

(

n
∑

i=1

x
p
i

)
1

p

.

Distance. The Eucledean distance between two vectors x and y is defined as

δ(x,y) = ‖x− y‖ =
√

(x− y)T (x− y =

√

√

√

√

n
∑

i=1

(xi − yi)
2.

Similarly, the Lp-norm distance between x and y is defined as

δp(x,y) = ‖x− y‖p

In particular, the L1-norm distance between x and y, also known as the Manhat-

tan distance is

Manhattan(x,y) = ‖x−y‖1 = |x1−y1|+|x2−y2|+. . .+|xn−yn| =
n
∑

i=1

|xi−yi|.
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Angle. In many settings, it is helpful to compare the directions of the n-dimensional

vectors x and y from the dataset X. In such cases, we use the cosine similarity

score, which is the cosine of the angle between the two vectors. It is defined as

follows:

cos(x,y) =
x · y

‖x‖‖y‖ =

(

x

‖x‖

)T (
y

‖y‖

)

=

=

∑n
i=1

xiyi
√

∑n
i=1

x2i

√

∑n
i=1

y2i

.

Cauchy-Scwartz inequality. The Cauchy-Schwarts inequality for the L2-norm

and the dot product of two vectors state that

|x · y| ≤ ‖x‖‖y‖

Therefore,

−1 ≤ cos(x,y) ≤ 1

Mean point of a dataset. Given a dataset X = {x1, . . . ,xm}, the mean point

of the dataset or the mean is defined as:

mean(X) = µX =
1

m

m
∑

i=1

xi

Total Variance. The total variance of the dataset X is the average squared

distance from a point in X to the mean point of X:

var(X) =
1

m

m
∑

i=1

δ(xi, µX) =
1

m

m
∑

i=1

‖xi − µX‖2

We can simplify the computation of variance as follows:

var(X) =
1

m

m
∑

i=1

‖xi − µX‖2 =
1

m

m
∑

i=1

n
∑

j=1

(xij − µXj)
2 =

1

m

m
∑

i=1

(‖xi‖2−2xi
TµX+‖µX‖2 = 1

m

(

m
∑

i=1

‖xi‖2 − 2mµX
T

(

1

m

m
∑

i=1

xi

)

+m‖µX‖2
)

=

1

m

(

m
∑

i=1

‖xi‖2 − 2mµX
TµX +m‖µX‖2

)

=

=
1

m

(

m
∑

i=1

‖xi‖2
)

− ‖µX‖2
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Orthogonal Projection. Consider two vectors (data points) x,y ∈ X.

An orthogonal decomposition of x in the direction of y is a pair of vectors p,

r, such that the following holds:

x = p+ r

p
T
r = 0

r
T
y = 0

That is, x can be decomposed as the sum of two orthogonal vectors, p and r,

one of which (r) is, in turn, orthogonal to y (which forces the other vector, p to be

co-aligned, or colinear with y)

Vector p is the orthogonal projection of x onto y. Vector r = x − p is the

perpendicular distance between x and y, and is colinear with the normal vector

to y.

Because p is colinear with y, we have

p = cy,

and

r = x− cy.

Because p
T
r = 0, we get

p
T
r = (cy)T (x− cy) = cyT

x− c2yT
y = 0

Because c 6= 0, we must therefore have

y
T
x− cyT

y = 0,

which yields

c =
y
T
x

yTy
=

y · x
‖y‖2

Therefore, the orthogonal projection of x onto y can be computed as

p =
x · y
‖y‖2x.

Another form of this expression is

p =
(

‖x‖2 cos(x,y)
)

x.
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More Linear Algebra Concepts

Linear combinations. Let X = {x1, . . . ,xm} be a dataset of points xi ∈ R
n.

Given a set of scalar values c1, . . . , cm, the vector

c1x1 + c2x2 + . . .+ cmxm

is called a linear combination of vectors x1, . . . ,xm.

Spanning set. The set of all possible linear combinations

v =

m
∑

i=1

cixi

of vectors x1, . . . ,xm, denoted span(x1, . . . ,xm) or span(X) is called the span-

ning set of x1, . . . ,xm.

Row and Column Space. Given the dataset X represented as an m× n matrix:

X =















X1 X2 . . . Xn

x1 x11 x12 . . . x1n
x2 x21 x22 . . . x2n
...

...
...

. . .
...

xm xm1 xm2 . . . xmn















the column span of X, denoted col(X) is defined as the

col(X) = span(X1, . . . ,Xn),

and the row span of X, denoted row(X) is defined as the

row(X) = span(x1, . . . ,xm)

We can see that col(X) ⊆ R
m and row(X) ⊆ R

n.

Linear dependence. A set of vectors v1, . . . ,vk are linearly dependent iff at

least one vector can be represented as a linear combination of others, i.e., if there

are scalars c1, . . . , ck such that at least one ci 6= 0, and

c1v1 + . . . ckvk = 0

Vectors v1, . . . ,vk are linearly independent otherwise.

Rank. Let S ⊆ R
d. A basis set for S is a set of linearly independent vectors

B = {v1, . . . ,vk} such that span(v1, . . . ,vk) = S.

If all vectors in B are pairwise orthogonal,i.e., (∀i, j ∈ 1 . . . k, i 6= j)(vi · vj =
0), B is called an orthogonal basis of S.
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If for each vector vi ∈ B, ‖vi‖ = 1, and B is an orthogonal basis, then, B is

called an orthonormal basis.

The standard basis for Rd is the basis consisting of vectors

e1 = (1, 0, . . . , 0)T

e2 = (0, 1, . . . , 0)T

. . .

ed = (0, 0, . . . , 1)T

Theorem. Every basis of a set S of vectors has the same number of vectors.

The number of vectors in a basis of S is called the dimension of S, denoted

dim(S).

Theorem. Given a matrix

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn











,

dim(col(A)) = dim(row(A)).

This value is called the rank of the matrix A, denoted rank(A).
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