Fundamentals of Machine Learning.
 Part 1. Linear Regression

Machine Learning: Regression Case.

Dataset. Consider a collection of features $\mathbf{X}=\left\{X_{1}, \ldots, X_{d}\right\}$, such that $\operatorname{dom}\left(X_{i}\right) \subseteq$ \mathbb{R} for all $i=1 \ldots d^{1}$. Consider also an additional feature Y, such that $\operatorname{dom}(Y) \subseteq$ \mathbb{R}
Let $X=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$ be a collection of data points, such that $(\forall j \in 1 \ldots n)\left(\mathbf{x}_{\mathbf{j}} \in\right.$ $\operatorname{dom}(\mathbf{X})$. Let $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $(\forall j \in 1 \ldots n)\left(y_{j} \in \operatorname{dom}(Y)\right)$. We write X as

$$
\mathbf{X}=\left(\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{d} \\
\hline x_{11} & x_{12} & \ldots & x_{1 d} \\
x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n d}
\end{array}\right)
$$

We also write $\mathbf{x}_{\mathbf{i}}=\left(x_{i 1}, \ldots, x_{i d}\right)$.

Supervised Learning Question. We treat \mathbf{X} as the independent or observed variables and Y as the dependent or target variable.

Our goal can be expressed as such:

Given the dataset X of data points, find a relationship between the vectors $\mathbf{x}_{\mathbf{i}}$ of observed data and the values y_{i} of the dependent variable.

In supervised learning settings, we refer to \mathbf{X} as training data, and \mathbf{y} as ground truth. Without loss of generality, we often call the pair (\mathbf{X}, \mathbf{y}) training set or training data.

[^0]Regression vs. Classification. If $\operatorname{dom}(Y) \subseteq \mathbb{R}$, then the supervised learning question above becomes a regression problem. That is, regression is the process of modeling dependencies between independent variables and one (or more) dependent variables when the dependent variables are numeric.

If $\operatorname{dom}(Y)=\left\{c_{1}, \ldots, c_{k}\right\}$, i.e., a finate set of categorical labels, then the supervised learning question becomes a classification problem. That is, classification is the process of modeling dependencies between independent variables and one dependent variable when the dependent variable is categorical ${ }^{2}$.

General approach to supervised learning. In both regression and classification cases, the overall approach to the problem has the following components.

- Model shape. The relationship between the independent variables X_{1}, \ldots, X_{d} and the target variable Y (based on observations \mathbf{X}) is represented as some function

$$
f: \operatorname{dom}\left(X_{1}\right) \times \ldots \times \operatorname{dom}\left(X_{d}\right) \longrightarrow \operatorname{dom}(Y)
$$

In regression cases, this function becomes

$$
f: \mathbb{R}^{d} \longrightarrow \mathbb{R}
$$

For the classification case, function f is called a classifier or classification model.

For the regression case, function f is called a regressor or regression model.

- Optimization criterion. An arbitrary function f from $\operatorname{dom}\left(X_{1}\right) \times \ldots \times$ $\operatorname{dom}\left(X_{d}\right)$ to $\operatorname{dom}(Y)$ is most likely not going to be a good representation of the true relationship between the independent and dependent variables.
In order to successfully find an appropriate classification or regression model, we need a criterion that allows us to select the best possible function out of a universe of possible functions. This criterion typically relies (heavily) on the data contained in the dataset \mathbf{X} and the ground truth data \mathbf{y}.
The optimization criterion is generally specified as follows.
The classification/regression approach considers a family of models

$$
f(\beta, \mathbf{x})
$$

where $\mathbf{x} \in \operatorname{dom}\left(X_{1}\right) \times \ldots \times \operatorname{dom}\left(X_{d}\right)$, and $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ is a set of numeric parameters determining the final "shape" of the model.
Given a fixed vector \mathbf{x}, the model becomes a function of its parameters β :

$$
f: \mathbb{R}^{m} \longrightarrow \operatorname{dom}(Y)
$$

[^1]An optimization criterion is essentially a condition $G(\beta)$ that depends on the vector $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$. Typically, this condition is expressed in a form of

$$
G(\beta) \longrightarrow \min
$$

(i.e., we want to find values of β that minimize the value of function G), or

$$
G(\beta) \longrightarrow \max
$$

(i.e., we want to find values of β that maximize the value of function G)

- Optimization procedure/Model Fit. The heart of any supervised learning process is the procedure of finding the appropriate model, typically called model fit procedure. This is also what is typically known as a classification algorithm or regression algorithm.

All supervised learning methods can be broken into two groups:

- Methods with explicit model fit procedure. These methods outline the shape of the model $f(\beta)$ and the optimization criterion $G(\beta)$ explicitly, and solve the optimization problem either in closed form to obtain the exact solution, or iteratively to obtain an approximate solution.
Methods with explicit model fit procedure include linear regression, support vector machines for both regression and classification, logistic regression (which is actually a classification method), and neural networks for both regression and classification among many others.
- Methods with implicit model fit procedure. These methods "hide" the exact function $f(\beta)$ and the optimization criterion $G(\beta)$, and instead concentrate on implementing a supervised learning heuristic via a set of algorithmic steps. It is possible to reverse-engineer the explicit shape of $f(\beta)$ and $G(\beta)$ for such methods, but these are typically more complex.
Methods with implicit model fit procedure include K-nearest neighbors and (to a point) any decision tree classifiers and association rule classifiers.
- Predictor. Once the optimal values $\hat{\beta}$ of parameters β are found by the model fit process/supervised learning algorithm, the function

$$
f(\hat{\beta}): \operatorname{dom}\left(X_{1}\right) \times \ldots \times \operatorname{dom}\left(X_{d}\right) \longrightarrow \operatorname{dom}(Y)
$$

becomes the predictor function or learned model that can be used in applications that require actually making predictions.
(Note, some supervised learning applications call for interpretive approach, which means that while the shape of the learned model is very important for consideration, the model itself is not intended for making any predictions.)

We illustrate the supervised learning process on the case of multivariate linear regression.

Linear Regression (Multivariate Case)

To save space, we discuss multivariate regression case directly.

Linear Regression. A regression function

$$
f\left(x_{1}, \ldots, x_{d}\right): \mathbb{R}^{n} \longrightarrow \mathbb{R}
$$

is called a linear regression function iff it has the form

$$
y=f\left(x_{1}, \ldots, x_{d}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \beta_{d} x_{d}+\epsilon .
$$

The values $\beta_{1}, \ldots, \beta_{n}$ are the linear coefficients of the regression function, otherwise known as feature loadings.

The value β_{0}, otherwise known as the intercept is the value of the regression function on the vector $x_{0}=(0, \ldots, 0): f(0,0, \ldots, 0)=\beta_{0}$.
The value ϵ represents error. The error is assumed to be independent of our data (vector $\left(x_{1}, \ldots x_{n}\right)$) and normally distributed with the mean of 0 and some unknown standard deviation σ^{2} :

$$
\epsilon \sim N\left(0, \sigma^{2}\right)
$$

The linear regression equation may be rewritten as

$$
y=\mathbf{x}^{T} \beta+\epsilon
$$

where $\mathbf{x}^{T}=\left(1, x_{1}, \ldots, x_{d}\right)$ and $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{d}\right)$.

Finding the best regression function. How do we find the "right" $f(\mathbf{x})$?
We can use the dataset $X=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$ for guidance.
Assume for a moment that we already know the values for coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{n}$ for some linear regression function $f()$. Then, this function can be used to predict the values $\hat{y}_{1}, \ldots, \hat{y}_{n}$ of the target variable Y on inputs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$: respectively:

$$
\begin{gathered}
\hat{y}_{1}=\mathbf{x}_{1}{ }^{T} \hat{\beta}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{11}+\hat{\beta}_{2} x_{12}+\ldots+\hat{\beta}_{d} x_{1 d} \\
\hat{y}_{2}=\mathbf{x}_{\mathbf{2}}{ }^{T} \hat{\beta}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{21}+\hat{\beta}_{2} x_{22}+\ldots+\hat{\beta}_{d} x_{2 d} \\
\ldots \\
\hat{y}_{n}=\mathbf{x}_{\mathbf{n}}{ }^{T} \hat{\beta}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{n 1}+\hat{\beta}_{2} x_{m 2}+\ldots+\hat{\beta}_{d} x_{n d}
\end{gathered}
$$

If we, without loss of generality assume that matrix

X

is

$$
X=\left(\begin{array}{lllll}
1 & x_{11} & x_{12} & \ldots & x_{1 d} \\
1 & x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n d}
\end{array}\right)
$$

then we can rewrite the expressions above using the linear algebra notation:

$$
\hat{\mathbf{y}}=X \hat{\beta}
$$

Thus, for each vector $\mathbf{x}_{\mathbf{i}}$ we have the regression prediction \hat{y}_{i} and the true value y_{i}.

Our goal is to minimize the error of prediction, i.e., to minimize the overall differences between the predicted and the observed values.

Error. Given a vector $\mathbf{x}_{\mathbf{i}}$, the prediction error $\operatorname{error}\left(\mathbf{x}_{\mathbf{i}}\right)$ is defined as:

$$
\operatorname{error}\left(\mathbf{x}_{\mathbf{i}}\right)=y_{i}-y_{i}^{\prime}=y_{i}-\mathbf{x}_{\mathbf{i}}^{T}=\epsilon_{i}
$$

Least Squares Approximation. What type of an estimator did we just obtain?
Let us consider a numeric-analytical approach to predicting coefficients β. In predicting β, we want to minimize the error resulted in our prediction.

There is a wide range of ways in which error can be considered "minimized". The traditional way of doing so is called the least squares method. In this method we minimize the sum of squares of the individual errors of prediction.

That is, we define the overall error of prediction $\operatorname{Error}(\mathbf{X})$ as following:

$$
\begin{gathered}
\operatorname{Error}(X)=\operatorname{Error}\left(\mathbf{x}_{\mathbf{1}}, \ldots \mathbf{x}_{\mathbf{n}}\right)=\sum_{i=1}^{n} \operatorname{error}^{2}\left(\mathbf{x}_{\mathbf{i}}\right)= \\
=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\mathbf{x}_{\mathbf{i}}^{T} \beta\right)\right)^{2}
\end{gathered}
$$

Among all β vectors, we want to find the one that minimizes $\operatorname{Error}(X)$.
If we fix the dataset X and instead let β vary, the error function becomes a function of β :

$$
L(\beta)=\sum_{i=1}^{m}\left(y_{i}-\left(\mathbf{x}_{\mathbf{i}}^{T} \beta\right)\right)^{2}
$$

We want to minimize

$$
L(\beta)
$$

subject to β :

$$
\min _{\beta} L(\beta)
$$

Solving the minimization problem. $L(\beta)$ is minimized when the derivative of $L()$ is equal to zero. This can be expressed as the following $d+1$ equations:

$$
\begin{gathered}
\frac{\partial L}{\partial \beta_{0}}=0 \\
\frac{\partial L}{\partial \beta_{1}}=0 \\
\frac{\partial L}{\partial \beta_{2}}=0 \\
\cdots \\
\frac{\partial L}{\partial \beta_{d}}=0 \\
\frac{\partial L}{\partial \beta_{j}}=\frac{\partial\left(\sum_{i=0}^{m}\left(y_{i}-\left(\mathbf{x}_{\mathbf{i}}^{T} \beta\right)\right)^{2}\right)}{\partial \beta_{i}}= \\
=2 \sum_{i=0}^{m} x_{i j}\left(y_{i}-\left(\beta_{0} x_{i 0}+\ldots+\beta_{n} x_{i n}\right)=0\right.
\end{gathered}
$$

The system of linear equations generated can be described as:

$$
X^{T}\left(y-X \beta^{\prime}\right)=0
$$

Its solution is

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

This can be rewritten as

$$
\hat{\beta}^{\prime}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}=\left(\sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}^{T}\right)^{-1} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}} y_{i}
$$

We can then estimate the values of y for $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{m}}$:

$$
\hat{y_{i}}=\mathbf{x}_{\mathbf{i}}^{T} \hat{\beta}=\mathbf{x}_{\mathbf{i}} \cdot\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

or:

$$
\hat{\mathbf{y}}=X \hat{\beta}=X\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}=P \mathbf{y}
$$

for $P=X\left(X^{T} X\right)^{-1} X^{T}$.

Conclusion. If we look at the Maximum Liklihood estimator we obtained and at the least squares estimator, we will notice and important fact - it is the same estimator.

Goodness-of-fit. You can test how good your regression model is by asking what percentage of variance the regression is responsible for. This is called a goodness-of-fit test, and the metric estimating the goodness of fit is called the R^{2} metric, and is computed as follows:

$$
R^{2}=\frac{\sum_{i=1}^{m}\left(\hat{y}_{i}-\mu_{y}\right)^{2}}{\sum_{i=1}^{m}\left(y_{i}-\mu_{y}\right)^{2}}
$$

Tricks. We have two equations describing the solution for the estimates β.
The first equation is

$$
X^{T} X \beta=X^{T} \mathbf{y}
$$

The second equation is

$$
\beta=\left(X^{T} X\right)^{-} 1 X^{T} \mathbf{y}
$$

The advantage of the second equation is that it provides a direct way of computing β.

The disadvantage is the fact that the computation involves taking the inverse of a matrix.

The first equation is a linear equation system. While it does not give a closed form solution, it can be leveraged in actual computations, if you are relying on a linear algebra package (such as NumPy) for your linear algebra computations. In such a case, using the solver for a system of linear equations rather than a function that inverts a matrix is preferrable.

Linear Regression with Categorical Variables

The specification for linear regression assumes that all variables X_{1}, \ldots, X_{n} are numeric, i.e., $\operatorname{dom}\left(X_{i}\right) \in \mathbb{R}$. Sometimes, however, some of the variables in the set \mathbf{X} are categorical.

Nominal Variables Case. Let X_{i} be a nominal variable with the domain $\operatorname{dom}\left(X_{i}\right)=$ $\left\{a_{1}, \ldots, a_{k}\right\}$. We proceed as follows.

- Select one value (w/o loss of generality, a_{k}) as the baseline.
- For each value $a \in\left\{a_{1}, \ldots, a_{k-1}\right\}$ create a new numeric variable X_{a}.
- Let the new set of variables be $\mathbf{X}^{\prime}=\left(\mathbf{X}-\left\{X_{i}\right\}\right) \cup\left\{X_{a_{1}}, \ldots X_{a_{k-1}}\right\}$
- represent values a_{1}, \ldots, a_{k-1} as vectors

$$
\begin{aligned}
& \mathbf{a}_{1}=(1,0,0, \ldots, 0) \\
& \mathbf{a}_{2}=(0,1,0, \ldots, 0)
\end{aligned}
$$

$$
\mathbf{a}_{\mathbf{k}-\mathbf{1}}=(0,0,0, \ldots, 1)
$$

and represent value a_{k} as the vector $\mathbf{a}_{\mathbf{k}}=(0, \ldots, 0)$

- Replace each vector $\mathbf{x}_{\mathbf{j}}=\left(x_{1}, \ldots, x_{i-1}, a_{l}, \ldots, x_{d}\right)$ with vector $\mathbf{x}_{\mathbf{i}}^{\prime}=\left(x_{1}, \ldots, x_{i-1}, \mathbf{a}_{\mathbf{l}}, x_{d}\right)$.
- Perform linear regression from X^{\prime} to \mathbf{y}.

Ordinal Variables Case. Let X_{i} be an ordinal variable with domain $\operatorname{dom}(X)=$ $\{1,2, \ldots, k\}^{3}$. We replace X_{i} as follows.

- Select one value (w/o loss of generality, a_{k}) as the baseline.
- For each value $j \in\{1, \ldots, k-1\}$ create a new numeric variable $X_{i j}$.
- Let the new set of variables be $X^{\prime}=\left(X-\left\{X_{i}\right\}\right) \cup\left\{X_{i 1}, \ldots X_{i k-1}\right\}$
- Represent values $1, \ldots, k-1$ of X_{i} as vectors

$$
\begin{gathered}
\mathbf{a}_{\mathbf{1}}=(1,0,0 \ldots, 0) \\
\mathbf{a}_{\mathbf{2}}=(1,1,0 \ldots, 0) \\
\ldots \\
\mathbf{a}_{\mathbf{k}-\mathbf{1}}=(1,1,1, \ldots, 1),
\end{gathered}
$$

and represent the value $X_{i}=k$ as the vector $\mathbf{a}_{\mathbf{k}}=(0,0,0, \ldots, 0)$.

- Replace each vector $\mathbf{x}_{\mathbf{j}}=\left(x_{1}, \ldots, x_{i-1}, l, \ldots, x_{d}\right)$ with vector $\mathbf{x}_{\mathbf{i}}^{\prime}=\left(x_{1}, \ldots, x_{i-1}, \mathbf{a}_{\mathbf{1}}, x_{d}\right)$.
- Perform linear regression from X^{\prime} to Y.

Basis Expansion

Given a set of features $\mathbf{X}=\left\{X_{1}, \ldots, X_{d}\right\}$, and a dataset $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}=(X, \mathbf{y})$, we can construct a least-squares linear regression using the features $X_{1}, \ldots X_{d}$.

However, we can also transform features.

Polynomial basis expansion. Given a feature X_{i}, add features $X_{i}^{2}, \ldots, X_{i}^{m}$ to the list of features, and represent the output as
$y=\beta_{0}+x_{1} \beta_{1}+\ldots+\beta_{i 1} x_{i}+\beta_{i 2} x_{i}^{2}+\ldots+\beta_{i m} x_{i}^{m}+\beta_{i+1} x_{i+1}+\ldots+\beta_{d} x_{d}$
This can be applied to any number of features from \mathbf{X}.

[^2]Interactions. Let X_{i} and X_{j} be two independent variables in X. We can add a feature $X_{i j}=X_{i} X_{j}$ to the model. If we want to build a linear regression model that accounts for interactions between all pairs of features, the expression will look as follows:
$y=\beta_{0}+x_{1} \beta_{1}+\ldots+x_{n} \beta_{n}+x_{1} x_{2} \beta_{12}+\ldots+x_{i-1} x_{i} \beta_{(i-1) i}=\beta_{0}+\sum_{i=1}^{d} x_{i} \beta_{i}+\sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} x_{j} \beta_{i j}$

General Expansion. Let $f_{1}(\mathbf{x}), \ldots, f_{s}(\mathbf{x})$ be efficiently computable functions over $\operatorname{dom}\left(X_{1}\right) \times \ldots \operatorname{dom}\left(X_{n}\right)$. We can consider the regression of the form:

$$
y=\beta_{0}+f_{1}(\mathbf{x}) \beta_{1}+f_{2}(\mathbf{x}) \beta_{2}+\ldots+f_{s}(\mathbf{x}) \beta_{s}
$$

Note. These regressions are non-linear in X, but they are linear in β. Therefore, the standard least squares regression techniques will work.

Evaluation

How accurate is the regression model? This can be measured in a number of ways.

Training Error. Training error, or SSE is the target function we are optimizing:

$$
S S E=\sum_{i=1}^{m}\left(y_{i}-\mathbf{x}_{\mathbf{i}}^{T} \hat{\beta}\right)^{2}
$$

Problem: overfit for more complex models.
Solution: Look for ways to penalize complexity.

Linear Regression for Interpretive Purposes

Most of statistical analysis is interpretive rather than predictive. That is, the analyst is interested in a model that provides for a clear explanation of the dependencies between the independent variables and the dependent variable, but the analyst is not interested in using the model for predictive purposes.

In such cases, predictive accuracy as represented by least squares minimization criterion is of secondary importance to model interpretability. Typically, linear regression models that include fewer independent variables with larger coefficients $\hat{\beta}_{i}$ are preferrable to models with more non-zero coefficients but of lower magnitudes, even if that latter models have better predictive accuracy/lower error.

To "force" the model fit process to find simpler models, we can modify the least squares optimization criterion in a variety of ways. Two such ways are briefly presented below.

Akaike Information Criterion (AIC). AIC chooses the model with the lowest value of

$$
A I C=\sum_{i=1}^{n}\left(y_{i}-\left(\hat{\beta_{0}}+\hat{\beta_{1}} x_{1 i}+\ldots+\hat{\beta}_{d} x_{d i}\right)\right)^{2}+2 d
$$

AIC adds a penalty for number of parameters d used in the model.

Bayesian Information Criterion (BIC). BIC chooses the model with the lowest value of

$$
A I C=\sum_{i=1}^{d}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1 i}+\ldots+\hat{\beta}_{d} x_{d i}\right)\right)^{2}+d \log (n)
$$

Like AIC, BIC adds a penalty for number of parameters d used in the model, but it scales the penalty by \log of the size of the dataset.

Maximum Liklihood Estimation for Linear Regression

The Linear Regression problem can also be expressed in terms of a maximum liklihood estimation problem.

Under our assumptions, ϵ_{i} are independently identically distributed according to a normal distribution:

$$
\epsilon_{i} \sim N\left(0, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{i}-\mathbf{x}_{\mathbf{i}} T_{\beta}\right)^{2}}{2 \sigma^{2}}}
$$

The probability of observing the vector

$$
\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=\left(\left(y_{1}-\mathbf{x}_{\mathbf{1}}^{T} \beta\right), \ldots\left(y_{n}-\mathbf{x}_{\mathbf{n}}^{T} \beta\right)\right)
$$

can therefore be expressed as follows:

$$
P\left(\epsilon \mid \beta, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{i}-\mathbf{x}_{i}^{T} \beta\right)^{2}}{2 \sigma^{2}}}
$$

The log liklihood function can be represented as follows:

$$
\begin{gathered}
\ell(\beta, \sigma)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{\mathbf{i}} \beta\right)^{2}= \\
-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}(\mathbf{y}-X \beta)^{T}(\mathbf{y}-X \beta)
\end{gathered}
$$

We can maximize the log liklihood function by taking the partial derivatives of $\ell(\beta, \sigma)$ and setting the derivatives to 0 .

For the purpose of prediction, we need to estimate the values $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{d}\right)$, but we actually do not need an estimate for the variance σ^{2}.

We need σ^{2} estimated though if we want to understand how well our linear regression model matches (fits) the observed data.

Estimating Regression Coefficients. The partial derivatives of $L(\beta, \sigma)$ on β_{i} parameters are:
$\frac{\partial L}{\partial \beta_{j}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{m} x_{i j}\left(y_{i}-\mathbf{x}_{\mathbf{i}}^{T} \beta\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} x_{i j}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{n} x_{i d}\right)\right)$
If we set it to zero, we get

$$
\sum_{i=1}^{m} x_{i j}\left(y_{i}-\mathbf{x}_{\mathbf{i}}^{T} \beta\right)=0
$$

Generalizing for the entire β, we can get

$$
\frac{\partial \ell}{\partial \beta}=\frac{1}{\sigma^{2}} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta)
$$

which, when set to a zero vector, gives us:

$$
X^{T}(\mathbf{y}-X \beta)=0
$$

Solving for β we get

$$
X^{T} \mathbf{y}=X^{T} X \beta
$$

which yields the closed form solution for β :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}
$$

[^0]: ${ }^{1}$ Later, we will relax this condition.

[^1]: ${ }^{2}$ Note, that while multiple regression, i.e., the process of modeling multiple dependent variables in parallel, is an important part of regression modeling, there are virtually no classification scenarios where multiple dependent categorical variables have to be modeled in conjunction with each other. That is, for classification, whenever we have multiple class variables, we consider modeling each class variable as a separate independent problem.

[^2]: ${ }^{3}$ Without loss of generality, we can represent all ordinal domains this way.

