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Fundamentals of Machine Learning: Part 2: Linear Classifiers

Binary Classification Problem

Dataset. Consider a collection of features X = {X1, . . . ,Xd}, such that dom(Xi) ⊆ R for all i = 1 . . . d. These

are our independent variables.

Consider also an additional variable Y , such that dom(Y ) = {0, 1} or dom(Y ) = {−1,+1}. This is our binary

dependent variable.

Let X = {x1, . . . ,xn} be a collection of data points, such that (∀j ∈ 1 . . . n)(xj ∈ R
d). Let y = {y1, . . . , yn}

such that (∀j ∈ 1 . . . n)(yj ∈ dom(Y )). We write X as

X =















X1 X2 . . . Xd

x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
. . .

...

xn1 xn2 . . . xnd















We also write xi = (xi1, . . . , xid).
The binary classification problem can be specified as follows:

Build a function f : Rd −→ dom(Y ) that predicts the binary label of a data point x ∈ R
d.

Dependent Variable. In classification scenarios, the dependent variable Y is typically considered to be categori-

cal. Many classification methods, in order to allow for the use of mathematical functions to represent classification

decisions, assume that Y takes numeric values. For binary classification problems, some methods take advantage

of treating values of Y as 0 and 1, while other methods (primarily those structured around separating planes) take

advantage of treating values of Y as −1 and +1. In what follows, we will treat levels of the dependent variable Y

(i.e., the class labels) as whatever values that suit the best the method we are studying.

If dom(Y ) = {v1, v2}, we sometimes use abbreviations Xv1 and Xv2 to represent all data points belonging to

classes v1 and v2 respectively.

LDA: Linear Discriminant Analysis

Separation of classes. For binary classification problems where the data points reside in the Rd space (or a subspace

of thereof), we often refer to solving the classification problem as in terms of separating the classes. Often, a mathe-

matical (geometrical construct) like a plane, a hyperspace, or multidimensional surface are used as actual separators

- with data points on one side of it classified into one (e.g., positive) class, and data points on the other side classified

into the other (e.g., negative) class.

Idea. Consider our d-dimensional space R
d. If we draw some line L(w) : w0 + w1x1 + . . . wdxd = 0 through

this space, and project the data points X on L(w), then we can reduce the problem of separating data points in d-

dimensional space to the problem of finding the line equation L(w) that best separates the projections of the data

points from X along a 1-dimensional space. (note, here w = (w0, w1, . . . , wd))
Figures 1 and 2 demonstrate this idea. Figure 1 shows how the labeled data points from a dataset X projected

onto some line L(w). Figure 2 shows just the one-dimensional picture - the projections of points from X onto the line

L(w).
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Figure 1: Linear Discriminant Analysis: projections of data points onto a single line.
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Figure 2: Linear Discriminant Analysis: separation of classes along a single line.

Goal. Following the idea expressed above, we want to find the set of values w = (w0, w1, . . . , wd) such that the line

L(w) is the best separating line for the training data 〈X, Y 〉.

Model Shape. From the above, it is clear that we are looking for a model that is essentially an equation of a line in

a d-dimensional space. The model is our line equation

L(w) : w0 + w1x1 + w2x2 + . . .+ wdxd = 0

Cost function/Optimization Criterion. What is the right mathematical criterion that matches the intuition of ”best

separation” for the two classes along a line based on projections of the data points on this line?

We start our derivation by constructing the set Aw of projections of points from X onto L(w).
Specifically, without loss of generality, let us assume that w is a unit vector, i.e.,

wTw = 1

The projection of a data point (d-dimensional vector) x = (x1, . . . , xd) onto w is

wTx

wTw
w = (wTx)w

The value a = wTx is the numeric offset of the projection of x onto w. The set Aw is then defined as

A = {wTx|x ∈ X} = {a1, . . . , an}

2



Let us split A into A0 = {ai|yi = 0} and A1 = {ai|yi = 1}.

We can find the means of the sets A0 and A1:

m0 =
1

|A0|

∑

ai∈A0

ai =
1

|A0|

∑

xi∈X0

wTx =
1

|X0|
wT

∑

mathbfxi∈X0

xi = wTµ0,

where µ0 is the centroid of class 0 (set X0).

Similarly, if we set µ1 =
1

|X1|

∑

mathbfxi∈X1
xi, then the mean point for class 1 along the line w is found as:

m1 = wTµ1

Attempt 1 at cost function. What if we set

f(w) = |m0 −m1| = wT (µ0 − µ1) −→ max

as our cost function? This is a good idea but it needs to be upgraded, because it is possible that the means of the

two classes are far apart, but the points are widely distributed (have a high variance). So, the real cost function needs

to take variance into account.

Attempt 2 at cost function. Let

s2
0
=

∑

ai∈A0

(ai −m0)
2

s21 =
∑

ai∈A1

(ai −m1)
2

We call s0 and s1 the scatter of classes 0 and 1 respectively. Scatter is the total squared deviation of all data points

in the class.

We want |m0 − m1| to be large, while we also want s0 and s1 to be small. One cost function that achieves this

effect is the Fisher Linear Discriminant Analysis (LDA) objective):

J(w) =
(m0 −m1)

2

s2
0
+ s2

1

−→ max

We call the vector w that optimizes J(w) the optimial linear discriminant.

Closed form solution? Let us try to optimize J(w).
First, let’s consider the (m0 −m1)

2 term.

(m0 −m1)
2 = (wT (µ0 − µ1))

2 = wT ((µ0 − µ1)(µ0 − µ1)
T )w

In this expression, (µ0 − µ1)(µ0 − µ1) is a d× d rank-one matrix.

Setting B = µ0 − µ1)(µ0 − µ1), we arrive to

(m0 −m1)
2 = wTBw

.

Next, let us figure out the scatter:

s20 =
∑

ai∈A0

(ai −m0)
2 =

∑

xi∈X0

(wTxi −wTµ0)
2 =

∑

xi∈X0

(wT (xi − µ0))
2 = wT





∑

xi∈X0

(xi − µ0)(xi − µ0)
T



w
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Here,
∑

xi∈X0
(xi − µ0)(xi − µ0)

T is also a d × d rank-one matrix we call scatter matrix for class 0. Let’s set

S0 =
∑

xi∈X0
(xi − µ0)(xi − µ0)

T .

Similarly, we can set S1 =
∑

xi∈X1
(xi − µ1)(xi − µ1)

T . Setting

S = S0 + S1,

we get

s2
0
+ s2

1
= wTS0w +wTS1w = wT (S0 + S1)w = wTSw

Thus,

J(w) =
wTBw

wTSw
.

Optimization. Now, let’s set

d

dw
J(w) = 0

d

dw
J(w) =

2Bw(wTSw)− 2Sw(wTBw)

(wTSw)2
= 0

From here:

Bw(wTSw)− Sw(wTBw) = 0

or

Bw(wTSw) = Sw(wTBw)

Following this:

Bw = Sw
wTBw

wTSw

Bw = J(w)Sw = λSw,

where λ = J(w).
This leads to:

(S−1B)w = λw,

that is:

The set of parameters w that optimizes the Fisher LDA objective is the eigenvector of the matrix S−1B

that corresponds to the largest eigenvalue λ of this matrix.

For a two-class problem with a non-singular matrix S (i.e., S−1 exists), the solution can be obtained as

ŵ = S−1(µ0 − µ1)

with w being ŵ normalized.
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