
. .

Cal Poly CSC 566 Advanced Data Mining Alexander Dekhtyar
. .

Logistic Regression

Binary Classification Problem

Dataset. Consider a collection of features X = {X1, . . . ,Xd}, such that dom(Xi) ⊆ R for all i = 1 . . . d. These

are our independent variables.

Consider also an additional variable Y , such that dom(Y ) = {0, 1} or dom(Y ) = {−1,+1}. This is our binary

dependent variable.

Let X = {x1, . . . ,xn} be a collection of data points, such that (∀j ∈ 1 . . . n)(xj ∈ R
d). Let y = {y1, . . . , yn}

such that (∀j ∈ 1 . . . n)(yj ∈ dom(Y )). We write X as

X =















X1 X2 . . . Xd

x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
. . .

...

xn1 xn2 . . . xnd















We also write xi = (xi1, . . . , xid).
The binary classification problem can be specified as follows:

Build a function f : Rd −→ dom(Y ) that predicts the binary label of a data point x ∈ R
d.

Dependent Variable. In classification scenarios, the dependent variable Y is typically considered to be categori-

cal. Many classification methods, in order to allow for the use of mathematical functions to represent classification

decisions, assume that Y takes numeric values. For binary classification problems, some methods take advantage

of treating values of Y as 0 and 1, while other methods (primarily those structured around separating planes) take

advantage of treating values of Y as −1 and +1. In what follows, we will treat levels of the dependent variable Y

(i.e., the class labels) as whatever values that suit the best the method we are studying.

If dom(Y ) = {v1, v2}, we sometimes use abbreviations Xv1 and Xv2 to represent all data points belonging to

classes v1 and v2 respectively.

Logistic Regression

Let us assume that dom(Y ) = {0, 1}.

In this case:

• Our independent variables are numeric

• Out dependent variable is represented in terms of a numeric value, so we can treat it as numeric.

Therefore, we could attempt linear regression as the method of predicting y = f(x) given the training set 〈X,Y 〉.
However... linear regression predictors of the form

L(β) = β0 + β1x1 + . . .+ βdxd

have unbounded values (see Figure 1), and therefore for a fixed set of parameters β, as values of individual xis

grow, the value Lβ(x) will grow.

We could create a predictor as follows (see Figure 2:

F (x) =

{

0, ifLβ(x) ≤ 0.5
1, otherwise
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Figure 1: Linear Regression fails to properly predict the dependent variable values as depednent value grows in

absolute value.
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Figure 2: Building a 0-1 predictor out of linear regression predictor.
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Intuition. The F () predictor looks reasonable. It is a step function that jumps from the value of 0 to the value 1

(remember, these are class labels) at some boundary point x, such that our linear regressor Lβ(x) = 0.5 (in multidi-

mensional space, the set of x, such that Lβ(x) = 0.5 forms a subspace that serves as a separating boundary).

The boundary points are determined by the training data X,Y (which in turn determine the coefficients β for the

linear regressor).

In such a setting the linear regression function L() is no longer a predictor of the class Y . This role is played by

F (). What does L() predict, though?

It is tempting to think that L() is predicting some sort of probability, given that we break at L() taking the value

0.5. However, because L() is unbounded, while probabilities range from 0 to 1, this is clearly not the case.

Odds and Log-odds. While probability, the value P (Y = 1) ranges from 0 to 1, another quantity related to proba-

bilities, namely, the odds ratio:

Odds =
P (Y = 1)

1− P (Y = 1)

ranges from 0 to +∞.

So. . . (drum roll) . . .

we could choose for our linear predictor L(β) = β0 + β1x1 + . . . + βdxd to attempt to predict the odds. This is

still not quite what we want as L() ranges from −∞ to +∞.

However. . . (drum roll again). . .

The quantity known as log odds (or log-odds ratio):

LogOdds = ln
P (Y = 1)

1− P (Y = 1)

does have the range

[−∞,+∞]

As such, we could, as the basis for our prediction procedure, take the following designation:

ln
P (Y = 1

1− P (Y = 1)
= L(β)(x) = β0 + β1x1 + . . .+ βdxd

(Parenthetically, note that P (Yi = 1) ≥ 0.5 is our boundary condition for assigning a data point xi to class 1.)

Finding the solution. Let’s remove the logarithm from the left hand side.

P (Y = 1)

1− P (Y = 1)
= eβ0+β1x1+...+βdxd

Simplifying:

P (Y = 1) = eβ0+β1x1+...+βdxd − P (Y = 1)eβ0+β1x1+...+βdxd

i.e.,

P (Y = 1)(1 + eβ0+β1x1+...+βdxd) = eβ0+β1x1+...+βdxd

or, in other words:

P (Y = 1) =
eβ0+β1x1+...+βdxd

(1 + eβ0+β1x1+...+βdxd)
=

1

1 + e−(β0+β1x1+...+βdxd)

The function f(x) = ex

1+ex
is known as the logistic function, and thus, the probability that a specific data point

belongs to class 1 is predicted by the logistic function applied to the linear predictor.
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Training the model. To find the coefficients β we need to build a cost function that we will optimize.

Recall, in our training data, given a data point xi ∈ X it’s class label Yi takes one of the values: 0 or 1.

The value p̂i =
1

1+e−(β0+β1xi1+...+βdxid)
ranges from 0 to 1.

Our ”error” on a single data point can be expressed as follows:

Error(β,xi) = −Yi ln(p̂i)− (1− Yi) ln(1− p̂i)

This expression is known as Log loss.

The full cost function can be then expressed as

LL(β) = −
∑

xi∈X

Error(β,xi) =
∑

xi∈X

(Yi ln(p̂i) + (1− Yi) ln(1− p̂i)).

This value needs to be minimized.

Gradient Descent. Let us look at the gradient of LL().

∂Error(β)

∂βj
=

∂Error

∂p̂i

∂p̂i

∂βj
=

(

−
Yi

p̂i
+

1− Yi

1− p̂i

)

(p̂i(1− p̂i · xij) = (p̂i − Yi)xij

Therefore,

∂LL(β)

∂βj
=

∑

xi∈X

(p̂i − Yi)xij

Our gradient descent procedure therefore is:

Step 1. Pick learning rate η > 0.

Step 2. Pick β0 = (β0
0 , . . . β

0
d)

Step 3. Update repeatedly βt+1
j = βt

j + η
∑

xi∈X
(Yi − p̂i)xij

Step 4. until convergence.
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