Cal Poly	CSC 566 Advanced Data Mining	Alexander Dekhtyar
Logistic Regression		

Binary Classification Problem

Dataset. Consider a collection of features $\mathbf{X}=\left\{X_{1}, \ldots, X_{d}\right\}$, such that $\operatorname{dom}\left(X_{i}\right) \subseteq \mathbb{R}$ for all $i=1 \ldots d$. These are our independent variables.

Consider also an additional variable Y, such that $\operatorname{dom}(Y)=\{0,1\}$ or $\operatorname{dom}(Y)=\{-1,+1\}$. This is our binary dependent variable.

Let $X=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\}$ be a collection of data points, such that $(\forall j \in 1 \ldots n)\left(\mathbf{x}_{\mathbf{j}} \in \mathbb{R}^{d}\right)$. Let $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$ such that $(\forall j \in 1 \ldots n)\left(y_{j} \in \operatorname{dom}(Y)\right)$. We write X as

$$
\mathbf{X}=\left(\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{d} \\
\hline x_{11} & x_{12} & \ldots & x_{1 d} \\
x_{21} & x_{22} & \ldots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n d}
\end{array}\right)
$$

We also write $\mathbf{x}_{\mathbf{i}}=\left(x_{i 1}, \ldots, x_{i d}\right)$.
The binary classification problem can be specified as follows:
Build a function $f: \mathbb{R}^{d} \longrightarrow \operatorname{dom}(Y)$ that predicts the binary label of a data point $\curvearrowleft \in \mathbb{R}^{d}$.
Dependent Variable. In classification scenarios, the dependent variable Y is typically considered to be categorical. Many classification methods, in order to allow for the use of mathematical functions to represent classification decisions, assume that Y takes numeric values. For binary classification problems, some methods take advantage of treating values of Y as 0 and 1, while other methods (primarily those structured around separating planes) take advantage of treating values of Y as -1 and +1 . In what follows, we will treat levels of the dependent variable Y (i.e., the class labels) as whatever values that suit the best the method we are studying.

If $\operatorname{dom}(Y)=\left\{v_{1}, v_{2}\right\}$, we sometimes use abbreviations $\mathbf{X}_{v_{1}}$ and $X_{v_{2}}$ to represent all data points belonging to classes v_{1} and v_{2} respectively.

Logistic Regression

Let us assume that $\operatorname{dom}(Y)=\{0,1\}$.
In this case:

- Our independent variables are numeric
- Out dependent variable is represented in terms of a numeric value, so we can treat it as numeric.

Therefore, we could attempt linear regression as the method of predicting $y=f(\mathbf{x})$ given the training set $\langle X, Y\rangle$. However... linear regression predictors of the form

$$
L(\beta)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

have unbounded values (see Figure 1), and therefore for a fixed set of parameters β, as values of individual $x_{i} \mathrm{~s}$ grow, the value $L_{\beta}(\mathrm{x})$ will grow.

We could create a predictor as follows (see Figure 2:

$$
F(\mathbf{x})= \begin{cases}0, & \text { if } L_{\beta}(\mathbf{x}) \leq 0.5 \\ 1, & \text { otherwise }\end{cases}
$$

Figure 1: Linear Regression fails to properly predict the dependent variable values as depednent value grows in absolute value.

Figure 2: Building a $0-1$ predictor out of linear regression predictor.

Intuition. The $F()$ predictor looks reasonable. It is a step function that jumps from the value of 0 to the value 1 (remember, these are class labels) at some boundary point \mathbf{x}, such that our linear regressor $L_{\beta}(\mathbf{x})=0.5$ (in multidimensional space, the set of \mathbf{x}, such that $L_{\beta}(\mathbf{x})=0.5$ forms a subspace that serves as a separating boundary).

The boundary points are determined by the training data X, Y (which in turn determine the coefficients β for the linear regressor).

In such a setting the linear regression function $L()$ is no longer a predictor of the class Y. This role is played by $F()$. What does $L()$ predict, though?

It is tempting to think that $L()$ is predicting some sort of probability, given that we break at $L()$ taking the value 0.5 . However, because $L()$ is unbounded, while probabilities range from 0 to 1 , this is clearly not the case.

Odds and Log-odds. While probability, the value $P(Y=1)$ ranges from 0 to 1 , another quantity related to probabilities, namely, the odds ratio:

$$
O d d s=\frac{P(Y=1)}{1-P(Y=1)}
$$

ranges from 0 to $+\infty$.
So... (drum roll) ...
we could choose for our linear predictor $L(\beta)=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}$ to attempt to predict the odds. This is still not quite what we want as $L()$ ranges from $-\infty$ to $+\infty$.

However... (drum roll again)...
The quantity known as \log odds (or log-odds ratio):

$$
\text { LogOdds }=\ln \frac{P(Y=1)}{1-P(Y=1)}
$$

does have the range

$$
[-\infty,+\infty]
$$

As such, we could, as the basis for our prediction procedure, take the following designation:

$$
\ln \frac{P(Y=1}{1-P(Y=1)}=L(\beta)(\mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}
$$

(Parenthetically, note that $P\left(Y_{i}=1\right) \geq 0.5$ is our boundary condition for assigning a data point $\mathbf{x}_{\mathbf{i}}$ to class 1 .)
Finding the solution. Let's remove the logarithm from the left hand side.

$$
\frac{P(Y=1)}{1-P(Y=1)}=e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}
$$

Simplifying:

$$
P(Y=1)=e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}-P(Y=1) e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}
$$

i.e.,

$$
P(Y=1)\left(1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}\right)=e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}
$$

or, in other words:

$$
P(Y=1)=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}}{\left(1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}}\right)}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{d} x_{d}\right)}}
$$

The function $f(x)=\frac{e^{x}}{1+e^{x}}$ is known as the logistic function, and thus, the probability that a specific data point belongs to class 1 is predicted by the logistic function applied to the linear predictor.

Training the model. To find the coefficients β we need to build a cost function that we will optimize.
Recall, in our training data, given a data point $\mathbf{x}_{\mathbf{i}} \in \mathbf{X}$ it's class label Y_{i} takes one of the values: 0 or 1 .
The value $\hat{p}_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i} 1+\ldots+\beta_{d} x_{i} d\right)}}$ ranges from 0 to 1 .
Our "error" on a single data point can be expressed as follows:

$$
\operatorname{Error}\left(\beta, \mathbf{x}_{\mathbf{i}}\right)=-Y_{i} \ln \left(\hat{p}_{i}\right)-\left(1-Y_{i}\right) \ln \left(1-\hat{p}_{i}\right)
$$

This expression is known as Log loss.
The full cost function can be then expressed as

$$
L L(\beta)=-\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} \operatorname{Error}\left(\beta, \mathbf{x}_{\mathbf{i}}\right)=\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}}\left(Y_{i} \ln \left(\hat{p}_{i}\right)+\left(1-Y_{i}\right) \ln \left(1-\hat{p}_{i}\right)\right) .
$$

This value needs to be minimized.

Gradient Descent. Let us look at the gradient of $L L()$.

$$
\frac{\partial \operatorname{Error}(\beta)}{\partial \beta_{j}}=\frac{\partial \operatorname{Error}}{\partial \hat{p}_{i}} \frac{\partial \hat{p}_{i}}{\partial \beta_{j}}=\left(-\frac{Y_{i}}{\hat{p_{i}}}+\frac{1-Y_{i}}{1-\hat{p_{i}}}\right)\left(\hat{p}_{i}\left(1-\hat{p}_{i} \cdot x_{i j}\right)=\left(\hat{p_{i}}-Y_{i}\right) x_{i j}\right.
$$

Therefore,

$$
\frac{\partial L L(\beta)}{\partial \beta_{j}}=\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}}\left(\hat{p}_{i}-Y_{i}\right) x_{i j}
$$

Our gradient descent procedure therefore is:
Step 1. Pick learning rate $\eta>0$.
Step 2. Pick $\beta^{0}=\left(\beta_{0}^{0}, \ldots \beta_{d}^{0}\right)$
Step 3. Update repeatedly $\beta_{j}^{t+1}=\beta_{j}^{t}+\eta \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}}\left(Y_{i}-\hat{p_{i}}\right) x_{i j}$
Step 4. until convergence.

