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PCA: Principal Components Analysis

Informal Motivation. A common situation in data analysis is this.

e A dataset has a large number of features: sometimes exceeding the number
of available data points.

e Simple exploratory analysis of data suggests that a lot of features are not
independent of each other (i.e., correlated to one degree or another).

e Analyst wants to obtain a representation of data that keeps the data variability
intact (or almost intact), but uses fewer dimensions.

PCA in a nutshell. Principal Components Analysis (PCA for short) is an or-
thogonal transformation of a dataset into a new system of coordinates where

e cach coordinate is orthogonal to others, and

e the coordinates are enumerated in the order of decreased variance.

PCA has the following properties:

¢ Independence of dimensions. Because each dimension in the new represe-
nation is orthogonal to others, the “features” that the new dimensions repre-
sent are all independent of each other.

e Variability of data. The new dimensions combined capture the same vari-
ability of the data as the original dataset.

e Dimensionality reduction. The number of dimensions can be reduced by
selecting only the top £ dimensions. The resulting representation will be
an approximation of the original dataset, but this approximation will use
significantly fewer dimensions than the original dataset.



Why maximize variability? Given a collection of data points, we want to be
able to tell them apart as best as we can.

Finding a dimension along which these data point vary the most (have the highest
variability) allows us to observe the actual differences between these data points.

PCA: The Math

Let V = {Vi,...,V,} be a set of observed variables, dom(V;) = R.
Let D = {dj,da2,...,dm} be a dataset:
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Step 1. Centralization. Let u; be the sample mean of V; on dataset D. We
centralize the dataset D as follows:
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In dataset X, the means of all variables V; are set to 0.

Step 2. Maximization of Variability. We want to find direction v = (v1,...,vy)
of the maximal variability of X. This means that we want to consider the following
values:
S; =Xi-V,
and find v such that the variance of the set {s1, s2, ..., Sy, } is the largest.

That is, we want to maximize the function:

m
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Note: We can have Var(s) be arbitrarily high if we pick v with arbitrarily high
values.

We need to limit the scale of v.



Step 3. Constraints on Solution. To limit the scale of v we introduce a con-
straint on the vectors v:

vl = 1.
This can be rewritten as
[|Iv]| —v-v=viv=1

We thus arrive to the following optimization problem.

Maximize

Var(v) =vI XTXv

subject to
viv=1

Step 4. Solution. We want to switch to an unconstrained optimization problem.
To do this, we introduce Lagrangian penalty into our function:

L(v,\) =vIXTXv+ 21 -vlv)
This function can now be optimized. We take the derivative of L w.r.t. v:
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and set it to O:
2XTXv —2\v =0,
i.e.
XTXp=)\v

What does this mean?

The solution is an eigenvector of the matrix X7 X. Which vector is it?

VIXTXv =vI(XTXv) =vI(wv) = AvTv) = A

Because we want to maximize v X7 Xv, this means that we are looking for v
to be an eigenvector of the largest eigenvalue of matrix X7 X

Spectral Theorem. If A is a symmetric matrix than A has an orthonormal basis
of eigenvectors with real eigenvalues.
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