Cal Poly

Machine Learning:
 Dimensionality Reduction: Principal Components Analysis

PCA: Principal Components Analysis

Informal Motivation. A common situation in data analysis is this.

- A dataset has a large number of features: sometimes exceeding the number of available data points.
- Simple exploratory analysis of data suggests that a lot of features are not independent of each other (i.e., correlated to one degree or another).
- Analyst wants to obtain a representation of data that keeps the data variability intact (or almost intact), but uses fewer dimensions.

PCA in a nutshell. Principal Components Analysis (PCA for short) is an orthogonal transformation of a dataset into a new system of coordinates where

- each coordinate is orthogonal to others, and
- the coordinates are enumerated in the order of decreased variance.

PCA has the following properties:

- Independence of dimensions. Because each dimension in the new represenation is orthogonal to others, the "features" that the new dimensions represent are all independent of each other.
- Variability of data. The new dimensions combined capture the same variability of the data as the original dataset.
- Dimensionality reduction. The number of dimensions can be reduced by selecting only the top k dimensions. The resulting representation will be an approximation of the original dataset, but this approximation will use significantly fewer dimensions than the original dataset.

Why maximize variability? Given a collection of data points, we want to be able to tell them apart as best as we can.

Finding a dimension along which these data point vary the most (have the highest variability) allows us to observe the actual differences between these data points.

PCA: The Math

Let $V=\left\{V_{1}, \ldots, V_{n}\right\}$ be a set of observed variables, $\operatorname{dom}\left(V_{i}\right)=\mathbb{R}$.
Let $D=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \ldots, \mathbf{d}_{\mathbf{m}}\right\}$ be a dataset:

$$
D=\left(\begin{array}{cccc}
d_{11} & d_{12} & \ldots & d_{1 n} \\
d_{21} & d_{22} & \ldots & d_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
d_{m 1} & d_{m 2} & \ldots & d_{m n}
\end{array}\right)
$$

Step 1. Centralization. Let μ_{i} be the sample mean of V_{i} on dataset D. We centralize the dataset D as follows:

$$
\begin{gathered}
X=D-\left(\begin{array}{cccc}
\mu_{1} & \mu_{2} & \ldots & \mu_{n} \\
\mu_{1} & \mu_{2} & \ldots & \mu_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{1} & \mu_{2} & \ldots & \mu_{n}
\end{array}\right)=\left(\begin{array}{cccc}
d_{11}-\mu_{1} & d_{12}-\mu_{2} & \ldots & d_{1 n}-\mu_{n} \\
d_{21}-\mu_{1} & d_{22}-\mu_{2} & \ldots & d_{2 n}-\mu_{n} \\
\vdots & \vdots & \ddots & \vdots \\
d_{m 1}-\mu_{1} & d_{m 2}-\mu_{2} & \ldots & d_{m n}-\mu_{n}
\end{array}\right)= \\
=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
- & \mathbf{x}_{\mathbf{1}} & - \\
- & \mathbf{x}_{\mathbf{2}} & - \\
\vdots & \vdots & \vdots \\
- & \mathbf{x}_{\mathbf{m}} & -
\end{array}\right)
\end{gathered}
$$

In dataset X, the means of all variables V_{i} are set to 0 .

Step 2. Maximization of Variability. We want to find direction $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ of the maximal variability of X. This means that we want to consider the following values:

$$
s_{i}=\mathbf{x}_{\mathbf{i}} \cdot \mathbf{v}
$$

and find v such that the variance of the set $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ is the largest.
That is, we want to maximize the function:

$$
\operatorname{Var}(\mathbf{s})=\sum_{i=1}^{m} s_{i}^{2}=\sum_{i=1}^{m}\left(\mathbf{x}_{\mathbf{i}} \cdot \mathbf{v}\right)^{2}=\mathbf{v}^{T} X^{T} X \mathbf{v}
$$

Note: We can have $\operatorname{Var}(\mathbf{s})$ be arbitrarily high if we pick \mathbf{v} with arbitrarily high values.

We need to limit the scale of \mathbf{v}.

Step 3. Constraints on Solution. To limit the scale of \mathbf{v} we introduce a constraint on the vectors v :

$$
\|\mathbf{v}\|=1
$$

This can be rewritten as

$$
\|\mathbf{v}\|=\mathbf{v} \cdot \mathbf{v}=\mathbf{v}^{T} \mathbf{v}=1
$$

We thus arrive to the following optimization problem.

Maximize

$$
\operatorname{Var}(\mathbf{v})=\mathbf{v}^{T} X^{T} X \mathbf{v}
$$

subject to

$$
\mathbf{v}^{T} \mathbf{v}=1
$$

Step 4. Solution. We want to switch to an unconstrained optimization problem. To do this, we introduce Lagrangian penalty into our function:

$$
L(\mathbf{v}, \lambda)=\mathbf{v}^{T} X^{T} X \mathbf{v}+\lambda\left(1-\mathbf{v}^{T} \mathbf{v}\right)
$$

This function can now be optimized. We take the derivative of L w.r.t. \mathbf{v} :

$$
\frac{\partial L}{\partial \mathbf{v}}=2 X^{T} X \mathbf{v}-2 \lambda \mathbf{v}
$$

and set it to 0 :

$$
2 X^{T} X \mathbf{v}-2 \lambda \mathbf{v}=0
$$

i.e.

$$
X^{T} X v=\lambda \mathbf{v}
$$

What does this mean?

The solution is an eigenvector of the matrix $X^{T} X$. Which vector is it?

$$
\mathbf{v}^{T} X^{T} X \mathbf{v}=\mathbf{v}^{T}\left(X^{T} X \mathbf{v}\right)=\mathbf{v}^{T}(\lambda \mathbf{v})=\lambda\left(\mathbf{v}^{T} \mathbf{v}\right)=\lambda .
$$

Because we want to maximize $\mathbf{v}^{T} X^{T} X \mathbf{v}$, this means that we are looking for \mathbf{v} to be an eigenvector of the largest eigenvalue of matrix $X^{T} X$.

Spectral Theorem. If A is a symmetric matrix than A has an orthonormal basis of eigenvectors with real eigenvalues.

References

[1] Mohammed J. Zaki, Wagner Meira Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, 2014.

