Machine Learning:
Dimensionality Reduction: Principal Components Analysis

PCA: Principal Components Analysis

Informal Motivation. A common situation in data analysis is this.

- A dataset has **a large number of features**: sometimes exceeding the number of available data points.
- Simple exploratory analysis of data suggests that a lot of features are not independent of each other (i.e., correlated to one degree or another).
- Analyst wants to obtain a representation of data that keeps the data variability intact (or almost intact), but uses fewer dimensions.

PCA in a nutshell. Principal Components Analysis (PCA for short) is an orthogonal transformation of a dataset into a new system of coordinates where

- each coordinate is orthogonal to others, and
- the coordinates are enumerated in the order of decreased variance.

PCA has the following properties:

- **Independence of dimensions.** Because each dimension in the new representation is orthogonal to others, the "features" that the new dimensions represent are all independent of each other.

- **Variability of data.** The new dimensions combined capture the same variability of the data as the original dataset.

- **Dimensionality reduction.** The number of dimensions can be reduced by selecting only the top k dimensions. The resulting representation will be an approximation of the original dataset, but this approximation will use significantly fewer dimensions than the original dataset.
Why maximize variability? Given a collection of data points, we want to be able to tell them apart as best as we can. Finding a dimension along which these data points vary the most (have the highest variability) allows us to observe the actual differences between these data points.

PCA: The Math

Let \(V = \{V_1, \ldots, V_n\} \) be a set of observed variables, \(\text{dom}(V_i) = \mathbb{R} \).

Let \(D = \{d_1, d_2, \ldots, d_m\} \) be a dataset:

\[
D = \begin{pmatrix}
 d_{11} & d_{12} & \cdots & d_{1n} \\
 d_{21} & d_{22} & \cdots & d_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{m1} & d_{m2} & \cdots & d_{mn}
\end{pmatrix}
\]

Step 1. Centralization. Let \(\mu_i \) be the sample mean of \(V_i \) on dataset \(D \). We centralize the dataset \(D \) as follows:

\[
X = D - \begin{pmatrix}
 \mu_1 & \mu_2 & \cdots & \mu_n \\
 \mu_1 & \mu_2 & \cdots & \mu_n \\
 \vdots & \vdots & \ddots & \vdots \\
 \mu_1 & \mu_2 & \cdots & \mu_n
\end{pmatrix}
= \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{m1} & x_{m2} & \cdots & x_{mn}
\end{pmatrix}
= \begin{pmatrix}
 -x_1 & - \\
 -x_2 & - \\
 \vdots & \vdots \\
 -x_m & -
\end{pmatrix}
\]

In dataset \(X \), the means of all variables \(V_i \) are set to 0.

Step 2. Maximization of Variability. We want to find direction \(v = (v_1, \ldots, v_n) \) of the maximal variability of \(X \). This means that we want to consider the following values:

\[
s_i = x_i \cdot v,
\]

and find \(v \) such that the variance of the set \(\{s_1, s_2, \ldots, s_m\} \) is the largest.

That is, we want to maximize the function:

\[
\text{Var}(s) = \sum_{i=1}^{m} s_i^2 = \sum_{i=1}^{m} (x_i \cdot v)^2 = v^T X^T X v
\]

Note: We can have \(\text{Var}(s) \) be arbitrarily high if we pick \(v \) with arbitrarily high values.

We need to limit the scale of \(v \).
Step 3. Constraints on Solution. To limit the scale of \(\mathbf{v} \) we introduce a constraint on the vectors \(\mathbf{v} \):

\[
||\mathbf{v}|| = 1.
\]

This can be rewritten as

\[
||\mathbf{v}|| = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v} = 1
\]

We thus arrive to the following optimization problem.

Maximize

\[
\text{Var}(\mathbf{v}) = \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}
\]

subject to

\[
\mathbf{v}^T \mathbf{v} = 1
\]

Step 4. Solution. We want to switch to an unconstrained optimization problem. To do this, we introduce Lagrangian penalty into our function:

\[
L(\mathbf{v}, \lambda) = \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v} + \lambda(1 - \mathbf{v}^T \mathbf{v})
\]

This function can now be optimized. We take the derivative of \(L \) w.r.t. \(\mathbf{v} \):

\[
\frac{\partial L}{\partial \mathbf{v}} = 2 \mathbf{X}^T \mathbf{X} \mathbf{v} - 2\lambda \mathbf{v},
\]

and set it to 0:

\[
2 \mathbf{X}^T \mathbf{X} \mathbf{v} - 2\lambda \mathbf{v} = 0,
\]

i.e.

\[
\mathbf{X}^T \mathbf{X} \mathbf{v} = \lambda \mathbf{v}
\]

What does this mean?

The solution is an eigenvector of the matrix \(\mathbf{X}^T \mathbf{X} \). Which vector is it?

\[
\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v} = \mathbf{v}^T (\mathbf{X}^T \mathbf{X} \mathbf{v}) = \mathbf{v}^T (\lambda \mathbf{v}) = \lambda (\mathbf{v}^T \mathbf{v}) = \lambda.
\]

Because we want to maximize \(\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v} \), this means that we are looking for \(\mathbf{v} \) to be an eigenvector of the largest eigenvalue of matrix \(\mathbf{X}^T \mathbf{X} \).

Spectral Theorem. If \(\mathbf{A} \) is a symmetric matrix then \(\mathbf{A} \) has an orthonormal basis of eigenvectors with real eigenvalues.
References