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Machine Learning:
Dimensionality Reduction: Principal Components

Analysis

PCA: Principal Components Analysis

Informal Motivation. A common situation in data analysis is this.

• A dataset has a large number of features: sometimes exceeding the number

of available data points.

• Simple exploratory analysis of data suggests that a lot of features are not

independent of each other (i.e., correlated to one degree or another).

• Analyst wants to obtain a representation of data that keeps the data variability

intact (or almost intact), but uses fewer dimensions.

PCA in a nutshell. Principal Components Analysis (PCA for short) is an or-

thogonal transformation of a dataset into a new system of coordinates where

• each coordinate is orthogonal to others, and

• the coordinates are enumerated in the order of decreased variance.

PCA has the following properties:

• Independence of dimensions. Because each dimension in the new represe-

nation is orthogonal to others, the ”features” that the new dimensions repre-

sent are all independent of each other.

• Variability of data. The new dimensions combined capture the same vari-

ability of the data as the original dataset.

• Dimensionality reduction. The number of dimensions can be reduced by

selecting only the top k dimensions. The resulting representation will be

an approximation of the original dataset, but this approximation will use

significantly fewer dimensions than the original dataset.
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Why maximize variability? Given a collection of data points, we want to be

able to tell them apart as best as we can.

Finding a dimension along which these data point vary the most (have the highest

variability) allows us to observe the actual differences between these data points.

PCA: The Math

Let V = {V1, . . . , Vn} be a set of observed variables, dom(Vi) = R.

Let D = {d1,d2, . . . ,dm} be a dataset:

D =











d11 d12 . . . d1n
d21 d22 . . . d2n

...
...

. . .
...

dm1 dm2 . . . dmn











Step 1. Centralization. Let µi be the sample mean of Vi on dataset D. We

centralize the dataset D as follows:

X = D−











µ1 µ2 . . . µn

µ1 µ2 . . . µn

...
...

. . .
...

µ1 µ2 . . . µn











=











d11 − µ1 d12 − µ2 . . . d1n − µn

d21 − µ1 d22 − µ2 . . . d2n − µn

...
...

. . .
...

dm1 − µ1 dm2 − µ2 . . . dmn − µn











=

=











x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn











=











− x1 −
− x2 −
...

...
...

− xm −











In dataset X, the means of all variables Vi are set to 0.

Step 2. Maximization of Variability. We want to find direction v = (v1, . . . , vn)
of the maximal variability of X. This means that we want to consider the following

values:

si = xi · v,

and find v such that the variance of the set {s1, s2, . . . , sm} is the largest.

That is, we want to maximize the function:

V ar(s) =

m
∑

i=1

s2i =

m
∑

i=1

(xi · v)
2 = v

TXTXv

Note: We can have V ar(s) be arbitrarily high if we pick v with arbitrarily high

values.

We need to limit the scale of v.
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Step 3. Constraints on Solution. To limit the scale of v we introduce a con-

straint on the vectors v:

||v|| = 1.

This can be rewritten as

||v|| = v · v = v
T
v = 1

We thus arrive to the following optimization problem.

Maximize

V ar(v) = v
TXTXv

subject to

v
T
v = 1

Step 4. Solution. We want to switch to an unconstrained optimization problem.

To do this, we introduce Lagrangian penalty into our function:

L(v, λ) = v
TXTXv + λ(1− v

T
v)

This function can now be optimized. We take the derivative of L w.r.t. v:

∂L

∂v
= 2XTXv − 2λv,

and set it to 0:

2XTXv − 2λv = 0,

i.e.

XTXv = λv

What does this mean?

The solution is an eigenvector of the matrix XTX. Which vector is it?

v
TXTXv = v

T (XTXv) = v
T (λv) = λ(vT

v) = λ.

Because we want to maximize v
TXTXv, this means that we are looking for v

to be an eigenvector of the largest eigenvalue of matrix XTX.

Spectral Theorem. If A is a symmetric matrix than A has an orthonormal basis

of eigenvectors with real eigenvalues.
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