
. .

CSC 566 Advanced Data Mining Alexander Dekhtyar
. .

Information Retrieval
Latent Semantic Indexing

Preliminaries

Vector Space Representation of Documents: TF-IDF

Documents. A single text document is a single unit of retrieval in Information

Retrieval systems. Examples of documents are:

• a single paragraph of text

• a tweet

• a news article

• a book

• a book chapter

• a web page

• a transcript of a conversation

• an individual utterance from a conversation

Document collection. Adocument collection D = {d1, . . . dn} is a set of docu-

ments.

Stopwords. A stopword is any word in a language that is considered to carry no

important meaning, and that can be ignored when creating feature set representa-

tions of documents.
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Vocabulary (corpus). The collection of non-stop word words (terms) found in

the documents from D is called the vocabulary or corpus of D. Given D, we

denote the vocabulary of D as

VD = {t1, . . . tM}.

(where D is unique, we denote the vocabulary of D as simply V .) Each ti is a

distinct term (keyword) found in at least one document in D.

Bag of words representation. Each document dj ∈ D is represented as a bag

of words, i.e., as an unordered collection of terms found in each document (bag

means that the number of occurrences of each term may be taken into account).

The standard representation of bag of words is a vector of keyword weights: a

vector which assigns each term ti ∈ V a weight based on its occurrence/non-

occurrence in dj .

As such, we view dj as the vector

dj = (w1j , w2j , w3j , . . . , wMj).

Here wij is the weight of term ti in document dj .

tf-idf vector space model. The most standard way of modeling text documents

and document collections represents keyword weights on the scale from 0 to 1.

The keyword weights incorporate two notions: term frequency and inverse doc-

ument frequency. Cosine similarity to compute the similarity between docu-

ments.

Term frequency. Given a document dj ∈ D and a term ti ∈ V , the term fre-

quency (TF) fij of ti in dj is the number of times ti occurs in dj . For a document

dj , we can construct its vector of term frequencies

fdj = (f1j, f2j , . . . , fMj).

Normalized term frequency. Term frequencies are commonly manipulated to

provide for a better representation of the document. Two manipulation techniques

used are thresholding and normalization.

Given a threshold value α, we set term frequency f ′
ij to be

f ′
ij =

{

fij : fij < α;
α : fij ≥ α

(i.e., we discount any further occurrences of the terms in document beyond a certain

threshold α number of occurrences).

Given a vector fdj of (possibly thresholded) term frequencies, we compute nor-

malized term frequencies tfij as follows:

tfij =
fij

max(f1j , f2j , . . . , fMj)
.

2



Document frequency (DF). Given a term ti ∈ V , its document frequency, dfi
is defined as the number of documents in which ti occurs:

dfi = |{dj ∈ D|fij > 0}|.

Inverse document frequency (IDF). Given a term ti ∈ V , its inverse document

frequency (IDF) is computed as

idfi = log
n

dfi
.

TF-IDF keyword weighting schema. Given a document dj and a term ti,

wij = tfij · idfi =
fij

max(f1j , . . . , fMj)
· log2

n

dfi
.

Relevance computation. Vector space retrieval traditionally uses the cosine sim-

ilarity to compute relevance:

sim(dj , q) = cos(dj , q) =
dj · q

||dj || · ||q||
=

∑M
i=1 wij · wiq

√

∑M
i=1w

2
ij ·

∑M
i=1w

2
iq

.

Singular-Valued Decomposition (SVD)

Orthogonal Vectors. Two vectors x = (x1, . . . , xM ) and y = (y1, . . . , yM ) are

orthogonal iff

x · y =

M
∑

i=1

xi · yi = 0.

Orthogonal Matrices. A matrix

V =

















a11 a12 . . . a1i . . . a1n
a21 a22 . . . a2i . . . a2n

. . . . . .

aj1 aj2 . . . aji . . . ajn
. . . . . .

am1 am2 . . . ami . . . amn

















is called orthogonal iff

• each column ai = (a1i, a2i, . . . , amj) has a length of 1:

√

√

√

√

m
∑

j=1

a2ij = 1

• vectors in every pair of columns ai,ak for 1 ≤ i, k ≤ n, i 6= k are orthogo-

nal:

ai · ak = 0

3



Lemma. If V is orthogonal, then

V V T = I,

where I is the unit matrix.

Singular Value Decomposition. Let X be a matrix

X =





x11 . . . x1n
. . .

xm1 . . . xmn





A Singular Value Decomposition of X is three matrices U , D, V , such that

X = UDV T ,

and:

• V T is an orthogonal matrix of size n× n:

V T =





v11 . . . v1n
. . .

vn1 . . . vnn





• U is an orthogonal matrix of size m×m:

U =





u11 . . . u1m
. . .

um1 . . . umm





• D is an m × n matrix, such that dij = 0 for i 6= j and i = j, when

i > min(n,m). That is, D is a pseudo-diagonal matrix.

Theorem. Any matrix X has a Singular Value Decomposition.

Constructing SVD of a matrix. We can prove the theorem above by construct-

ing the matrices U , V T and D such that X = UDV T .

Step 1. Matrix V . Let V be the matrix of principal components of X:

V =











− v1 −
− v2 −
...

...
...

− vq −











Note: V V T = I , i.e., V is an orthogonal matrix.
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Step 2. XV = UD. We have matrix V and we have matrix X. We can show that

XV can be decomposed into an orthogonal matrix U and a diagonal matrix D.

Let us compute S = XV :

sij = xi
vj

sij is the score of vector xi on principal component vj .

Lemma. sj = (s1j , . . . , smj) is an eigenvector of XXT .

Proof.

sj = Xvj

XT sj = XTXvj = λjvj

XXT sj = λjXvj = λjsj

Because S consists of eigenvectors of XXT , S is orthogonal as well. However,

the lengths of the vectors s1, . . . , sn are not necessarily 1 (unlike the lengths of

vectors v1, . . . ,vq.)

The lengths of the vectors are

||sj|| =
√

sj
T sj =

√

vj
TXTXvj =

√

λj

This gives us our decomposition:

U =





| |
s1√
λ1

. . . sn√
λn

| |





D =











√
λ1 0 . . . 0
0

√
λ2 . . . 0

...
...

. . .
...

0 0 . . .
√
λn











and

XV = S = UD

Step 3. Finalize

XV = UD

XV V T = UDV T

X = UDV T
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SVD matrices. The SVD matrices are:

• V : matrix of prinicpal component vectors of X (i.e., unit eigenvectors of

XTX. V T has eigenvectors in columns.

• D: matrix of singular values: square roots of eigenvectors of XTX.

• U : matrix of unit eigenvectors of XXT .

Singular Values. Let q = min(n,m). The values d11, . . . , dqq from the matrix

D of the singular value decomposition X = UDV T are called singular values.

Theorem. Let λ1, . . . , λq be the eigenvalues of matrix XXT sorted in descend-

ing order. Then, the diagonal elements of matrix D,

dii =
√

λi.

The values
√
λ1, . . . ,

√

λq are called singular values of matrix X.

Latent Semantic Analysis[?]

Keyword-Term Matrix. Given a document collection C = {d1, . . . , dn}, over

a vocabulary V = {t1, . . . , tm}, where

dj = (dj1, . . . , djm),

the document-by-keyword matrix C is defined as

C =





d11 . . . d1m
. . .

dn1 . . . dnm





The keyword-by-document matrix X = CT is then:

X = CT =





d11 . . . dn1
. . .

d1m . . . dnm





X has n columns (one column per document) and m rows (one row per key-

word).

Let us apply Singular Value Decomposition to X.

X = UDV T ,

where U is an orthogonal m×m matrix, D is a pseudo-diagonal m× n matrix

with singular values of XXT on the diagonal, and V T is an orthogonal n × n

matrix.
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Note. Let q = min(m,n). We observe, that the above decomposition can be

rewritten as

X = UqDqV
T
q ,

where where U is an orthogonal m× q matrix, D is a diagonal q× q matrix with

singular values of XXT on the diagonal, and V T is an orthogonal q × n matrix.

Note. In some Information Retrieval problems, the size of the dataset is smaller

than the total number of words in them, so n < m, or even n << m, so, in

these situations, q = n, and the dimensions of the matrices become: U : m × n,

D : n× n, and V T : n× n.

Approximating X. Let k < q. The matrix

Xk = UkDkV
T
k ,

where

• Uk is the m× k matrix consisting of the first k columns of matrix U

• Dk is a diagonal matrix with k largest singular values σ1, . . . σk of XXT on

the diagonal

• V T
k is the matrix consisting of the first k columns of matrix V T

Theorem. Matrix Xk is the best rank(k) matrix approximating X.

The approximantion is computed using the Frobenius norm of the matrices:

||X|| =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2.

It is known that

||X|| =

√

√

√

√

min(m,n)
∑

i=1

σ2
i .

Interpretations. Matrix Uk has m (number of keywords) rows and k columns.

It represents the loadings of the keywords onto the k latent factors.

Matrix V T
k has k rows and n (number of documents) columns. Each column vj

represents the compacted representation of the document dj in the space of k latent

factors.

Uses. We can now take the matrix V (or V T ) and use the rows (columns) instead

of the original vectors dj = (dj1, . . . , djm) to represent documents.

We can use cosine similarity on the vectors vj and vi to find the similarity

between two documents in the compacted space.
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Query Answering. Suppose a new document (or a query) g = (g1, . . . , gm) is

introduced, and we want to find out how similar g is to documents in D.

We can obtain the compact representation of g in our latent space:

vg = D−1
k

UT
k g.

Note. Dk is a diagonal matrix, so D−1
k

is a diagonal matrix with values 1
σ1
, . . . 1

σk

on the diagonal.

Latent Semantic Indexing: Putting it together. Here is the set of steps to eval-

uate document similarity in latent space:

1. Construct the keyword-by-document matrix X for the document collection

D.

2. Perform SVD X = UDV T on X.

3. Determine k < min(m,n): number of latent categories.

4. Extract matrix V T
k : the first k rows of matrix V T .

5. Use columns of V T
k as representations of documents.

6. Construct compact representations of other documents by ”hitting” them

with D−1
k UT

k from the left ( vg = D−1
k UT

k g).

7. Use cosine similarity in the space of latent categories to compare documents

(old and new) to each other.
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