CSC 566

Advanced Data Mining

Information Retrieval Latent Semantic Indexing

Preliminaries

Vector Space Representation of Documents: TF-IDF

Documents. A single *text document* is a single *unit of retrieval* in Information Retrieval systems. Examples of documents are:

- a single paragraph of text
- a tweet
- a news article
- a book
- a book chapter
- a web page
- a transcript of a conversation
- an individual utterance from a conversation

Document collection. Adocument collection $D = \{d_1, \dots, d_n\}$ is a set of documents.

Stopwords. A **stopword** is any word in a language that is considered to carry no important meaning, and that can be ignored when creating feature set representations of documents.

1

Vocabulary (corpus). The collection of **non-stop word** words (terms) found in the documents from D is called the **vocabulary** or **corpus** of D. Given D, we denote the vocabulary of D as

$$V_D = \{t_1, \ldots t_M\}.$$

(where D is unique, we denote the vocabulary of D as simply V.) Each t_i is a **distinct term** (keyword) found in at least one document in D.

Bag of words representation. Each document $d_j \in D$ is represented as a **bag of words**, i.e., as an **unordered** collection of terms found in each document (**bag** means that the number of occurrences of each term may be taken into account).

The standard representation of **bag of words** is a vector of keyword weights: a vector which assigns each term $t_i \in V$ a weight based on its occurrence/non-occurrence in d_j .

As such, we view d_j as the vector

$$\mathbf{d_j} = (w_{1j}, w_{2j}, w_{3j}, \dots, w_{Mj}).$$

Here w_{ij} is the weight of term t_i in document d_j .

tf-idf vector space model. The most standard way of modeling text documents and document collections represents keyword weights on the scale from 0 to 1. The keyword weights incorporate two notions: term frequency and inverse document frequency. Cosine similarity to compute the similarity between documents.

Term frequency. Given a document $d_j \in D$ and a term $t_i \in V$, the **term frequency (TF)** f_{ij} of t_i in d_j is the number of times t_i occurs in d_j . For a document d_j , we can construct its vector of term frequencies

$$f_{d_i} = (f_{1j}, f_{2j}, \dots, f_{Mj}).$$

Normalized term frequency. Term frequencies are commonly manipulated to provide for a better representation of the document. Two manipulation techniques used are **thresholding** and **normalization**.

Given a threshold value α , we set term frequency f_{ij}' to be

$$f'_{ij} = \begin{cases} f_{ij} & : & f_{ij} < \alpha; \\ \alpha & : & f_{ij} \ge \alpha \end{cases}$$

(i.e., we discount any further occurrences of the terms in document beyond a certain **threshold** α number of occurrences).

Given a vector f_{d_j} of (possibly thresholded) term frequencies, we compute **nor**malized term frequencies tf_{ij} as follows:

$$tf_{ij} = \frac{f_{ij}}{\max(f_{1j}, f_{2j}, \dots, f_{Mj})}$$

Document frequency (DF). Given a term $t_i \in V$, its document frequency, df_i is defined as the number of documents in which t_i occurs:

$$df_i = |\{d_j \in D | f_{ij} > 0\}|.$$

Inverse document frequency (IDF). Given a term $t_i \in V$, its **inverse document frequency (IDF)** is computed as

$$idf_i = \log \frac{n}{df_i}.$$

TF-IDF keyword weighting schema. Given a document d_j and a term t_i ,

$$w_{ij} = tf_{ij} \cdot idf_i = \frac{f_{ij}}{\max(f_{1j}, \dots, f_{Mj})} \cdot \log_2 \frac{n}{df_i}.$$

Relevance computation. Vector space retrieval traditionally uses the **cosine similarity** to compute relevance:

$$sim(d_j, q) = cos(d_j, q) = \frac{d_j \cdot q}{||d_j|| \cdot ||q||} = \frac{\sum_{i=1}^M w_{ij} \cdot w_{iq}}{\sqrt{\sum_{i=1}^M w_{ij}^2 \cdot \sum_{i=1}^M w_{iq}^2}}$$

Singular-Valued Decomposition (SVD)

Orthogonal Vectors. Two vectors $\mathbf{x} = (x_1, \dots, x_M)$ and $\mathbf{y} = (y_1, \dots, y_M)$ are **orthogonal** iff

$$x \cdot y = \sum_{i=1}^{M} x_i \cdot y_i = 0.$$

Orthogonal Matrices. A matrix

$$V = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ & & \ddots & & \ddots & & \\ a_{j1} & a_{j2} & \dots & a_{ji} & \dots & a_{jn} \\ & & \ddots & & \ddots & \\ a_{m1} & a_{m2} & \dots & a_{mi} & \dots & a_{mn} \end{pmatrix}$$

is called orthogonal iff

• each column $\mathbf{a_i} = (a_{1i}, a_{2i}, \dots, a_{mj})$ has a length of 1:

$$\sqrt{\sum_{j=1}^m a_{ij}^2} = 1$$

vectors in every pair of columns a_i, a_k for 1 ≤ i, k ≤ n, i ≠ k are orthogonal:

$$\mathbf{a_i} \cdot \mathbf{a_k} = 0$$

Lemma. If V is orthogonal, then

$$VV^T = I$$
,

where I is the unit matrix.

Singular Value Decomposition. Let *X* be a matrix

$$X = \begin{pmatrix} x_{11} & \dots & x_{1n} \\ & \dots & \\ x_{m1} & \dots & x_{mn} \end{pmatrix}$$

A Singular Value Decomposition of X is three matrices U, D, V, such that

$$X = UDV^T,$$

and:

• V^T is an orthogonal matrix of size $n \times n$:

$$V^T = \begin{pmatrix} v_{11} & \dots & v_{1n} \\ & \dots & \\ v_{n1} & \dots & v_{nn} \end{pmatrix}$$

• U is an **orthogonal matrix** of size $m \times m$:

$$U = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ & \dots & \\ u_{m1} & \dots & u_{mm} \end{pmatrix}$$

• D is an $m \times n$ matrix, such that $d_{ij} = 0$ for $i \neq j$ and i = j, when $i > \min(n, m)$. That is, D is a pseudo-diagonal matrix.

Theorem. Any matrix *X* has a Singular Value Decomposition.

Constructing SVD of a matrix. We can prove the theorem above by constructing the matrices U, V^T and D such that $X = UDV^T$.

Step 1. Matrix *V*. Let *V* be the matrix of principal components of *X*:

$$V = \begin{pmatrix} - \mathbf{v_1} & - \\ - & \mathbf{v_2} & - \\ \vdots & \vdots & \vdots \\ - & \mathbf{v_q} & - \end{pmatrix}$$

Note: $VV^T = I$, i.e., V is an orthogonal matrix.

Step 2. XV = UD. We have matrix V and we have matrix X. We can show that XV can be decomposed into an orthogonal matrix U and a diagonal matrix D.

Let us compute S = XV:

$$s_{ij} = \mathbf{x_i}^{\mathbf{v_j}}$$

 s_{ij} is the score of vector x_i on principal component v_j .

Lemma. $\mathbf{s_j} = (s_{1j}, \dots, s_{mj})$ is an eigenvector of XX^T .

Proof.

$$\mathbf{s_j} = X\mathbf{v_j}$$
$$X^T\mathbf{s_j} = X^TX\mathbf{v_j} = \lambda_j\mathbf{v_j}$$
$$XX^T\mathbf{s_j} = \lambda_jX\mathbf{v_j} = \lambda_j\mathbf{s_j}$$

Because S consists of eigenvectors of XX^T , S is orthogonal as well. However, the lengths of the vectors $\mathbf{s_1}, \ldots, \mathbf{s_n}$ are not necessarily 1 (unlike the lengths of vectors $\mathbf{v_1}, \ldots, \mathbf{v_q}$.)

The lengths of the vectors are

$$||\mathbf{s}_{\mathbf{j}}|| = \sqrt{\mathbf{s}_{\mathbf{j}}^T \mathbf{s}_{\mathbf{j}}} = \sqrt{\mathbf{v}_{\mathbf{j}}^T X^T X \mathbf{v}_{\mathbf{j}}} = \sqrt{\lambda_j}$$

This gives us our decomposition:

$$U = \begin{pmatrix} | & | \\ \frac{\mathbf{s_1}}{\sqrt{\lambda_1}} & \dots & \frac{\mathbf{s_n}}{\sqrt{\lambda_n}} \\ | & | \end{pmatrix}$$
$$D = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{pmatrix}$$

and

$$XV = S = UD$$

Step 3. Finalize

$$XV = UD$$
$$XVV^{T} = UDV^{T}$$
$$X = UDV^{T}$$

SVD matrices. The SVD matrices are:

- V: matrix of prinicpal component vectors of X (i.e., unit eigenvectors of $X^T X$. V^T has eigenvectors in columns.
- D: matrix of singular values: square roots of eigenvectors of $X^T X$.
- U: matrix of unit eigenvectors of XX^T .

Singular Values. Let $q = \min(n, m)$. The values d_{11}, \ldots, d_{qq} from the matrix D of the singular value decomposition $X = UDV^T$ are called **singular values**.

Theorem. Let $\lambda_1, \ldots, \lambda_q$ be the eigenvalues of matrix XX^T sorted in descending order. Then, the diagonal elements of matrix D,

$$d_{ii} = \sqrt{\lambda_i}.$$

The values $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_q}$ are called **singular values** of matrix X.

Latent Semantic Analysis[?]

Keyword-Term Matrix. Given a document collection $C = \{d_1, \ldots, d_n\}$, over a vocabulary $V = \{t_1, \ldots, t_m\}$, where

$$d_j = (d_{j1}, \ldots, d_{jm}),$$

the document-by-keyword matrix C is defined as

$$C = \begin{pmatrix} d_{11} & \dots & d_{1m} \\ & \dots & \\ d_{n1} & \dots & d_{nm} \end{pmatrix}$$

The keyword-by-document matrix $X = C^T$ is then:

$$X = C^T = \begin{pmatrix} d_{11} & \dots & d_{n1} \\ & \dots & \\ d_{1m} & \dots & d_{nm} \end{pmatrix}$$

 \boldsymbol{X} has \boldsymbol{n} columns (one column per document) and \boldsymbol{m} rows (one row per keyword).

Let us apply Singular Value Decomposition to X.

$$X = UDV^T,$$

where U is an orthogonal $m \times m$ matrix, D is a pseudo-diagonal $m \times n$ matrix with singular values of XX^T on the diagonal, and V^T is an orthogonal $n \times n$ matrix.

Note. Let $q = \min(m, n)$. We observe, that the above decomposition can be rewritten as

$$X = U_q D_q V_a^T,$$

where where U is an orthogonal $m \times q$ matrix, D is a diagonal $q \times q$ matrix with singular values of XX^T on the diagonal, and V^T is an orthogonal $q \times n$ matrix.

Note. In some Information Retrieval problems, the size of the dataset is smaller than the total number of words in them, so n < m, or even n << m, so, in these situations, q = n, and the dimensions of the matrices become: $U : m \times n$, $D : n \times n$, and $V^T : n \times n$.

Approximating X. Let k < q. The matrix

$$X_k = U_k D_k V_k^T,$$

where

- U_k is the $m \times k$ matrix consisting of the first k columns of matrix U
- D_k is a diagonal matrix with k largest singular values $\sigma_1, \ldots, \sigma_k$ of XX^T on the diagonal
- V_k^T is the matrix consisting of the first k columns of matrix V^T

Theorem. Matrix X_k is the best rank(k) matrix approximating X.

The approximantion is computed using the Frobenius norm of the matrices:

$$||X|| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}.$$

It is known that

$$|X|| = \sqrt{\sum_{i=1}^{\min(m,n)} \sigma_i^2}.$$

Interpretations. Matrix U_k has m (number of keywords) rows and k columns. It represents the loadings of the keywords onto the k latent factors.

Matrix V_k^T has k rows and n (number of documents) columns. Each column $\mathbf{v_j}$ represents the compacted representation of the document d_j in the space of k latent factors.

Uses. We can now take the matrix V (or V^T) and use the rows (columns) instead of the original vectors $d_j = (d_{j1}, \ldots, d_{jm})$ to represent documents.

We can use cosine similarity on the vectors v_j and v_i to find the similarity between two documents in the compacted space.

Query Answering. Suppose a new document (or a query) $g = (g_1, \ldots, g_m)$ is introduced, and we want to find out how similar g is to documents in D.

We can obtain the compact representation of g in our latent space:

$$v_g = D_k^{-1} U_k^T \mathbf{g}.$$

Note. D_k is a diagonal matrix, so D_k^{-1} is a diagonal matrix with values $\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_k}$ on the diagonal.

Latent Semantic Indexing: Putting it together. Here is the set of steps to evaluate document similarity in latent space:

- 1. Construct the keyword-by-document matrix X for the document collection D.
- 2. Perform SVD $X = UDV^T$ on X.
- 3. Determine $k < \min(m, n)$: number of latent categories.
- 4. Extract matrix V_k^T : the first k rows of matrix V^T .
- 5. Use columns of V_k^T as representations of documents.
- 6. Construct compact representations of **other documents** by "hitting" them with $D_k^{-1}U_k^T$ from the left ($v_g = D_k^{-1}U_k^T$ g).
- 7. Use cosine similarity in the space of latent categories to compare documents (old and new) to each other.

References

[1] Scott Deerwester, Susan T. Dumais, Richard Harshman. (1990) Indexing by Latent Semantic Analysis. JASIS 41(6): 391-407.