Machine Learning: Classification/Supervised Learning: Perceptron

Perceptron

Many classification methods are naturally defined for the case when there are only two categories in the set of category labels. Such situations are usually called binary classification.

One of the simplest binary classifiers is perceptron.

Definition. Let \(X = \{\bar{x}_1, \ldots, \bar{x}_n\} \) be a set of data points, where each point \(\bar{x}_i = (a_1, \ldots, a_d) \) is a vector of length \(d \). Let \(C = \{+1, -1\} \) is the set of category labels, and let \(Y = \{y_1, \ldots, y_n\}, y_i \in C \) be the category labels \(y_i = \text{class}(\bar{x}_i) \).

A perceptron is binary linear classifier that consists of

1. a linear function
 \[
 f(\bar{x}) = \sum_{j=1}^{d} w_j \cdot a_j
 \]
 for some vector \(w = (w_1, \ldots, w_d) \) of weights,
2. a threshold value \(\theta \), and
3. a decision procedure:
 \[
 \text{class}(\bar{x}) = \begin{cases}
 +1 & \text{if } f(\bar{x}) > \theta; \\
 -1 & \text{if } f(\bar{x}) < \theta;
 \end{cases}
 \]

Intuition. The perceptron function \(f(\bar{x}) = w \cdot \bar{x} \) defines a \(d - 1 \) dimensional hyperplane through the \(d \)-dimensional feature space. Points on the positive side of \(f \) are classified into the positive class (the \(+1\) class). Points on the negative side of \(f \) are classified to the negative class (the \(-1\) class).

Notes.

- For a perceptron to correctly classify the data, the data must be linearly separable. A dataset is called linearly separable if there exists a hyperplane through its feature space that separates the points in one category from the points in another category.
- If there are multiple hyperplanes that linearly separate the data, the perceptron will converge to one of them.

The error function for the perceptron is essentially

\[
\text{Error}(f(\bar{x})) = \sum_{i=1}^{n} |f(\bar{x}_i) - y_i|,
\]

i.e. the number of incorrectly classified data points. Therefore \(\text{Error}(f) = 0 \) for any hyperplane \(f \) that linearly separates the dataset, and the perceptron does not differentiate between such hyperplanes.
Training Perceptron

We first present the perceptron training algorithm for $\theta = 0$.

1. Set $w = (0, \ldots, 0)$.
2. Pick $\eta > 0$, the learning rate of the perceptron.
3. For each training example $(\bar{x}, y), \bar{x} \in X$ do:

 (a) $y' = w \cdot \bar{x}$
 (b) if y' and y have the same sign, do nothing.
 (c) if y' and y have different signs:
 $w := w + \eta \cdot y \cdot \bar{x}$

To train the perceptron with an arbitrary value of θ:

- replace the vector $w = (w_1, \ldots, w_d)$ with the vector $w' = (w_1, \ldots, w_d, \theta)$.
- replace every vector $\bar{x} \in X$, where $x = (a_1, \ldots, a_d)$ with the vector $\bar{x}' = (a_1, \ldots, a_d, -1)$.
- Train the perceptron using the algorithm above on the weights w' and feature vectors $X' = \{\bar{x}_1', \ldots, \bar{x}_n'\}$.

Note: If you squint at it, the training process for the perceptron classifier should remind you of something. Hint: where else have you seen the learning rate parameter?

Indeed, this algorithm is a special case of gradient descent/gradient ascent.

When to stop

The training can stop if:

- All $\bar{x} \in X$ have been correctly classified (i.e., when classification error = 0).
- Failing that, perceptron training can be stopped in one of the following ways:

 - After M iterations for some number $M > n$.
 - After the following detection error:

 $$Error' = \frac{1}{2} \sum_{i=1}^{n} |w \cdot \bar{x}_i \cdot (\text{sign}(w \cdot \bar{x}_i) - y_i)|$$

 stops decreasing.

 (Note: $Error'$ computes the sum of distances from the separating hyperplane of all points that are misclassified. We need the $\frac{1}{2}$ normalizing factor because $|\text{sign}(w \cdot \bar{x}_i) - y_i| = 2$ when the perceptron misclassifies a data point.)

References
